11th CLASS - 1st Annual 2024

ATHEMATICS GROUP : SECOND

SUBJECTIVE PART

TIME: 2 HRS 30 MINUTES

MARKS: 80

SECTION-I

QUESTION NO. 2. Write short answers any Eight (8) of the following

Dak-2-24

16_

i	Simplify (5, -4) (-3, -2)
ii	Separate into real and imaginary parts $\frac{2-7!}{4+5!}$
iii	Prove that $\vec{Z} = Z$ if Z is real
iv	Simplify $(a + b i)^2$
ν	Write two proper subsets of { a , b , c }
vi	Show that $(p \land q) \rightarrow p$ is a tautology
vii	Find x and y if $\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$
viii	Find the matrix X if $\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$ X = $\begin{bmatrix} 2 & 1 \\ 5 & 10 \end{bmatrix}$
ix	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$, then find A_{12} and A_{32}
x	Evaluate $\omega^{28} + \omega^{29} + 1$
хi	Use remainder theorem to find the remainder when $x^2 + 3x + 7$ is divided by $x + 1$
xii	Discuss the nature of the roots of equation $2x^2 - 5x + 1 = 0$

16

LIEST	ION NO. 3 Write short answers any Fight (8) of the following	10
i	Define partial fraction resolution	
li	Suppose $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$ Find the values of A and B	
iii	Write the first four terms of the following sequence, if $a_n = (-1)^n n^2$	
iv	Which term of the A.P 5 , 2 , - 1 , is - 85 ?	
٧	If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P. Show that the common ratio is $\pm \sqrt{\frac{a}{c}}$	
vi	Show that $G^2 = AH$ If $a = 2i$, $b = 4i$	
vii	Find the value of n if ${}^{n}P_{2} = 30$	
viii	Find the number of the diagonals of a 6-sided figure	,
ix	A die is rolled. What is the probability that the dots on the top are greater than 4?	
x	Prove that $4^k > 3^k + 4$ is true for $k = 2, 3$	
хi	Calculate (0.97) ³ by means of binomial theorem	
xii	Expand up to 4 terms $(1-x)^{1/2}$, taking the values of x such that the expansion is value	i
		ID T

(P.T.O)

QUESTION NO. 4 Write short answers any Nine (9) of the	e following
--	-------------

i	Find ℓ , when $\theta = 65^{\circ} 20'$, $r = 18 \text{ mm}$
ii	Verify that $2 \sin 45^\circ + \frac{1}{2} \csc 45^\circ = \frac{3}{\sqrt{2}}$
III	Without using the tables , find the value of sec (- 300)
iv	Prove that $\frac{\cos 8^o - \sin 8^o}{\cos 8^o + \sin 8^o} = \tan 37^o$
v	Prove that $1 + \tan \alpha \tan 2 \alpha = \sec 2 \alpha$
vi	Write down the domain and range of sin x
vii	Find the period of $\cot \frac{x}{2}$
viii	Draw the graph of $y = \cos x$ for $0 \le x \le 360^{\circ}$
ix	What is difference between right angle triangle and oblique triangle
х	Find the area of the triangle ABC , if $a = 200$, $b = 120$, $\gamma = 150^{\circ}$
хi	Find the radius of in-circle if $a = 13$, $b = 14$, $c = 15$
xii	Without using calculator, show that $tan^{-1} \frac{5}{12} = sin^{-1} \frac{5}{13}$
xiii	Solve the equation $\sin x + \cos x = 0$

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

18

Q.5- (A)	Solve the equation $\sqrt{5x^2 + 7x + 2} - \sqrt{4x^2 + 7x + 18} = x - 4$
(B)	Use matrices to solve the following system of equation $2x_1 + x_2 + 3x_3 = 3$ $x_1 + x_2 - 2x_3 = 0$ $-3x_1 - x_2 + x_3 = -4$
Q.6- (A)	Resolve the following into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$
(B)	Find n so that $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$ may be the A.M. between a and b
Q.7-(A)	A natural number is chosen out of the first fifty natural numbers. What is the probability that the chosen number is multiple of 3 or 5 ?
(B)	Expand $\left(\frac{x}{2} - \frac{2}{x^2}\right)^6$ by using binomial theorem
Q.8-(A)	Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$
′(B)	The sides of triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$ Prove that the greatest angle of the triangle is 120°
Q.9-(A)	Prove that : $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$ Where θ is not an odd multiple of $\frac{\pi}{2}$
(B)	Prove that: $\cos^{-1} A + \cos^{-1} B = \cos^{-1} [AB - \sqrt{1 - A^2} \sqrt{1 - B^2}]$

117 (Sub) - 1st Annual 2024