SUBJECTIVE PART

TIME: 2 HRS 30 MINUTES

MARKS: 80

SECTION-I

QUESTION NO. 2 Write short answers any Eight (8) of the following

DGK-1-24

QUE	STION NO. 2 Write short answers any Eight (8) of the following	16
i	Simplify $(7, 9) + (3, -5)$	
ii	Find the multiplicative inverse of (-4 ,7)	
iii	$\forall z \in C$, prove that $z.\overline{z} = z ^2$	50
iv	Simplify i ⁻¹⁰	
v	Write the power set of { 9, 11}	
vi	Construct the truth table for ($p \land \sim p$) $\rightarrow q$	
vii	Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$	
viii	If A and B are square matrices of the same order, then explain why in general $(A+B)^2 \neq A^2 + 2AB + B^2$	4
ix	Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$	
х	Solve the equation $x^2 - 2x - 899 = 0$ by completing the square	
хi	Evaluate $\omega^{28} + \omega^{29} + 1$	
xii	Find the condition that one root of equation $x^2 + px + q = 0$ is double the other.	
11.0	L	-

QUESTION NO. 3 Write short answers any Eight (8) of the following

16

Ì	Define an identity	
, ii	Change $\frac{6x^3+5x^2-7}{2x^2-x-1}$ in to proper fraction	
iii	Find the next two terms 1, 3, 7, 15, 31,	
iv	If $a_{n-3} = 2n-5$, find the nth term of the sequence	
v	Show that the reciprocals of the terms of the geometric sequence a_1 , a_1r^2 , a_1r^4 ,form another geometric sequence	
vi	Find A.M between $x-3$ and $x+5$	
vii	Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$	
viii	Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$	
ix	Determine the probability of getting 2 heads and 2 talls when a coin is tossed four times	
х	Prove $1+4+7+\cdots+(3n-2)=\frac{n(3n-1)}{2}$	
хi	Calculate by means of Binomial theorem (0.97) ³	
xii	Expand (8 - 5x) ^{-2/3} up to four terms.	

)

(P.T.O)

QUESTION NO. 4 Write short answers any Nine (9) of the following

If $\tan\theta = \frac{8}{15}$ and terminal arm of the angle is in the III quadrant, find the value of $\sin\theta$ and $\cos\theta$
Prove that $\sec^2\theta - \csc^2\theta = \tan^2\theta - \cot^2\theta$
If α , β , γ are angles of a triangle ABC, Prove that $\tan(\alpha + \beta) + \tan \gamma = 0$
Find value of sec 75°, without using tables
Prove that $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$
Write the domain and range of $y = \tan x$
Find the period of cosec $10x$
Draw the graph of $y = \sin \frac{x}{2}$ for $0 \le x \le 2\pi$
Find the smallest angle of the triangle ABC , when $a = 37.34$, $b = 3.24$, $c = 35.06$
Find area of triangle ABC, if $a = 18$, $b = 24$, $c = 30$
Prove that $r r_1 r_2 r_3 = \Delta^2$
Without using calculator, show that $2 \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{24}{25}$
Find the solution of equation $\csc\theta=2$ which lies in $[0,2\pi]$

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

Q.5- (A)	For what values of m, will the roots of the equation $x^2 - 2(1+3m)x + 7(3+2m) = 0$ be equal
(B)	Solve the system linear equations by Cramer's Rule $2x_1 - x_2 + x_3 = 8$
	$x_1 + 2x_2 + 2x_3 = 6$ $x_1 - 2x_2 - x_3 = 1$
Q.6- (A)	Resolve into partial fractions $\frac{1}{(1-ax)(1-bx)(1-cx)}$
(B)	If $y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \dots$ and if $0 < x < \frac{3}{x}$, then show that $x = \frac{3y}{2(1+y)}$
Q.7-(A)	Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^{n}C_r$
(B)	If x is so small that its square and higher powers can be neglected, show that $\frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2}x$
Q.8-(A)	Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$
(B)	By using $\Delta = \frac{1}{2}$ bc sin α drive the Hero's formula
Q.9-(A)	If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quad, find the value of $\frac{3 \sin \theta + 4 \cos \theta}{\cos \theta - \sin \theta}$
(B)	Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$