MODEL PAPER (MATH) INTER (PART - I) (BISE BWP) YEAR 2024 AND ONWARD (SUBJECTIVE)

Note: It is compulsory to attempt any ($8-8$) Parts each from Q.No. 2 and Q.No. 3 while attempt any (9) Parts from Q.No.4. Attempt any (3) Questions from Part - II .Write same Question No. and its Part No. as given in the Question Paper.

	(viii)	In $\triangle \mathrm{ABC}$; if $\mathrm{a}=3 ; \mathrm{C}=6 ; \beta=36^{\circ} 20^{\prime}$, then find b
	(ix)	State the Law of tangents of triangle.
	(x)	State Heroes Formula
	(xi)	State the Law of tangents of triangle.
	(xii)	Show that $\operatorname{Cos}^{-1}(-\mathrm{x})=\pi-\operatorname{Cos}^{-1} \mathrm{x}$
	(xiii)	Show the equation $\operatorname{Cosec} \theta=2$

Q.No. 5	(a)	Solve the System ; $\begin{aligned} & X_{1}+3 X_{2}+2 X_{3}=3 \\ & 4 X_{1}+5 X_{2}-3 X_{3}=-3 \\ & 3 X_{1}-2 X_{2}+17 X_{3}=-4 \end{aligned}$	(5)
	(b)	Use Synthetic Division to find the values of p and q if $x+1$ and $x-2$ are the factors of polynomial $x^{3}+p x^{2}+q x+6 \neq 6$	
Q.No. 6	(a)	Resolve into Partial Fractions $\frac{x^{2}+2 x+2}{\left(x^{2}+3\right)(x+1)(x-1)}$	(
	(b)	If $y=1+2 x+4 x^{2}+8 x^{3}+\ldots$ (i) Show that $\mathrm{x}=\frac{y-1}{2 y}$ (ii) Find the interval in which the series is Convergent .	(5)
Q.No. 7	(a)	Two cards from a deck of 52 playing cards are drawn in such a way that the card is replaced after the first draw. Find the probability that the first card is king and the second is queen.	(5)
	(b)	Show that $\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots+\binom{n}{n-1}=2^{n-1}$	(5)
Q.No. 8	(a)	Prove that $\operatorname{Sin} \frac{\pi}{9} \operatorname{Sin} \frac{2 \pi}{9} \operatorname{Sin} \frac{\pi}{3} \operatorname{Sin} \frac{4 \pi}{9}=\frac{3}{16}$	(5)
	(b)	Prove that ($\left.r_{3}-r\right) \operatorname{Cot} \frac{r}{2}=C$	(5)
Q.No. 9	(a)	Prove the following identity. State the domain of θ in this case . $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\operatorname{Sec} \theta-\tan \theta$	(5)
	(b)	Prove that : $\operatorname{Tan}^{-1} \frac{120}{119}=2 \cos ^{-1} \frac{12}{13}$	(5)

MODEL PAPER (MATH) INTER (PART - I) (BISE BWP) YEAR 2024 AND ONWARD OBJECTIVE

Note : Four choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. on the Objective Bubble Sheet. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Q.No. 1 (1)	The set $\{0,1\}$ possesses the Closure property with respect to : (A) Addition (B) Multiplication (C) Subtraction (D) Division
(2)	The Set $\{0\}$ is a : (A) Empty Set (B) Null Set (C) Singleton Set (D) Solution Set
(3)	The number of elements in power set of $\{0,1\}$ are: $\quad 1 \begin{array}{llll}\text { (A) } 4 & \text { (B) } 3 & \text { (C) } 2 & \text { (D) } 1\end{array}$
(4)	$\left\{1, w, w^{2}\right\}$ is group under : (A) Addition (B) Subtraction (C) Multiplication (D) Division
(5)	If A and B are disjoint sets then: $\quad \begin{array}{llll}\text { (A) } A \cap B=A & \text { (B) } A \cap B=B & \text { (C) } A \cap B=\varnothing & \text { (D) } A \cap B=\{0\}\end{array}$
(6)	If A and B are the roots of $5 x^{2}-x-2=0$ then α and β is : (A) $-\frac{1}{5}$ (B) $\frac{1}{5}$ (C) $\frac{2}{5}$ (D) $\frac{5}{2}$
(7)	$\frac{x^{2}+1}{q(x)}$ will be Proper fraction if degree of $\mathrm{q}(\mathrm{x})$ equals : (A) 1 (B) 2 (C) 3 (D) 0
(8)	The discriminant of Quadratic Equation is : (A) $4 a c-b^{2}$ (B) $b^{2}+4 a c$ (C) $a^{2}-4 a c$ (D) $\mathrm{b}^{2}-4 a c$
(9)	No term in G.P is : $\quad \begin{array}{lllll}\text { (A) } 3 & \text { (B) } 2 & \text { (C) } 1 & \text { (D) } 0\end{array}$
(10)	The fraction $\frac{x+1}{x^{2}+2}$ is : (A) Proper Fraction (B) Improper fraction (C) Mixed (D) Identity
(11)	The Harmonic Mean between a and b is (A) $\frac{a+b}{2 a b}$ (B) $\frac{a-b}{2 a b}$ (C) $\frac{2 a b}{a-b}$ (D) $\frac{2 a b}{a+b}$
(12)	The $2^{\text {nd }}$ term in the expansion of $(1+2 x)^{1 / 2}$ is: $\begin{aligned} & \text { (A) } x\end{aligned}$
(13)	The statement $4^{n}>3^{n}+4$ is true if : \quad (A) $n<2$ (B) $n \neq 2$ (C) $n \geq 2 \quad$ (D) $n \leq 2$
(14)	If n is a positive integer then $n^{2}+n$ is divisible by : \quad (A) 2 (B) 3 (C) 4 (D) 5
(15)	Co - ratio of Cosine is : \quad (A) Sec (B) Sin (C) Cot (D) Cosec
(16)	If $\sin \theta<0$ and $\operatorname{Cot} \theta>0$, then in which quadrant θ lies: (A) $1^{\text {st }}$ (B) $2^{\text {nd }}$ (C) $3^{\text {rd }}$ (D) $4^{\text {th }}$
(17)	Domain of $\operatorname{Cos} x$ is : $\quad(A) Z \quad$ (B) Q (C) R (D) N
(18)	$\frac{a b c}{4 \Delta}=\quad \begin{array}{lllll} \\ \text { (A) } r_{1} & \text { (B) } r_{2} & \text { (C) } r_{3} & \text { (D) } R\end{array}$
(19)	$\begin{array}{llll}\text { The value of } \operatorname{Cos}\left(\operatorname{Tan}^{-1} \sqrt{3}\right) \text { is : } & \text { (A) } \frac{1}{2} & \text { (B) }-\frac{1}{2} & \text { (C) } \frac{\sqrt{3}}{2} \\ & \text { (D) }-\frac{\sqrt{3}}{2}\end{array}$
(20)	$\begin{array}{llll}\text { A solution of } 1+\operatorname{Cos} x=0 \text { is : } & \text { (A) } \frac{\pi}{2} & \text { (B) } \pi & \text { (C) } 2 \pi\end{array}$ (D) 3π

