

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

APPLIED MATHEMATICS

Roll Number

(10)

TIME ALLOWED: THREE HOURS	MAXIMUM MARKS = 100			
NOTE: (i) Attempt ONLY FIVE questions. ALL qu	estions carry EQUAL marks			
(ii) All the parts (if any) of each Question mus	t be attempted at one place instead of at different places.			
(iii) Candidate must write Q. No. in the Answer	r Book in accordance with Q. No. in the Q.Paper.			
(iv) No Page/Space be left blank between the a	nswers. All the blank pages of Answer Book must be crossed.			
(v) Extra attempt of any question or any part o	f the attempted question will not be considered.			
(vi) Use of Calculator is allowed.				

- **Q. No. 1.** (a) Evaluate the surface integral $\iint \vec{A} \cdot \vec{n} dS$ where $\vec{A} = z\vec{i} + x\vec{j} 3y^2 z\vec{k}$ and S is the portion of the cylinder $x^2 + y^2 = 8$ lying in the first octant between z = 0 and z = 4.
 - (b) Prove that

$$\nabla (f(r)) = \frac{f'(r)}{r} \vec{r},$$

where $\vec{r} = x\vec{\iota} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|.$

- Q. No. 2. (a) The greatest resultant that two forces can have is of magnitude P and the least is (10) of magnitude Q. Show that, when they act at an angle α , their resultant is of magnitude $\sqrt{P^2 \cos^2 \frac{\alpha}{2} + Q^2 \sin^2 \frac{\alpha}{2}}$.
 - (b) A sphere of weight W and radius a is suspended by a string of length l from a (10) point P and a weight w is also suspended from P by a string sufficiently long for the weight to hang below the sphere. Show that the inclination of the first string to the vertical is $\sin^{-1}\frac{wa}{(W+w)(a+l)}$.
- **Q. No. 3.** (a) Show that the law of force towards the pole, of a particle describing the curve (10) $r^n = a^n \cos n\theta$ is given by

$$f = \frac{(n+1)h^2 a^{2n}}{r^{2n+3}}.$$

- (b) The maximum velocity that a particle executing simple harmonic motion of (10) amplitude a attains, is v. If it is disturbed in such a way that its maximum velocity becomes nv. Find the change in the amplitude and the time-period of motion.
- **Q. No.4.** (a) Define ordinary and singular points of the differential equation (10) $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$. When a singular point is said to be regular and irregular? Find regular and irregular singular points of the differential equation $(x^2 - 4)^2 y'' + (x - 2)y' + y = 0$.
 - (b) Show that

$$J_{3/2} = \sqrt{\frac{2}{\pi x}} \left[\frac{\sin x}{x} - \cos x \right].$$

Q. No. 5. (a) Solve the equation by using method of undetermined coefficients (10) $y'' - y' + y = 2\cos 3x.$

> (b) Use the method of Frobenius to find two linear independent series solutions in (10) powers of x of the DE. $x^2y'' - (x^2 + x)y' + y = 0.$

> > Page 1 of 2

(10)

APPLIED MATHEMATICS

- **Q. No. 6.** (a) Classify general second order partial differential equation (PDE) into elliptic, (10) parabolic and hyperbolic form. Discuss the nature of the PDE $(1-x^2)u_{xx} 2xyu_{xy} + (1-y^2)u_{yy} = 0$ at each $(x, y) \in R^2$.
 - (b) Use the method of separation of variables to find the solution $u(x,t):[0,T] \times$ (10) $[0,L] \rightarrow R$ to the initial/boundary value problem $u_t(x,t) = u_{xx}(x,t)$ for $0 < t \le T$ and $0 \le x \le L$, u(x,0) = f(x), for $0 \le x \le L$, u(0,t) = u(L,t) = 0, for $0 < t \le T$, where $f:[0,L] \rightarrow R$ is a known function.
- Q. No. 7. (a) Use Simpson's 3/8 rule to estimate the integral (10) $\int_{1}^{3} (x^{3} - 2x^{2} + 7x - 5) dx.$

By comparing your answer with exact value, find the error.

(b) Solve the system of equations by Jacobi iterative method. (10) 10x + 3y + z = 19, 3x + 10y + 2z = 29, x + 2y + 10z = 35

Q. No. 8.	(a)	In the following	table values	of $y =$	$x + \sin x^2$ are tabulated
-----------	-----	------------------	--------------	----------	------------------------------

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
f(x)	1.84147	2.03562	2.19146	2.29290	2.32521	2.27807	2.14935

Construct a difference table and estimate f(1.04) and f(1.57).

(b) Use trapezoidal and Simpson's 1/3 rules to approximate $\int_0^{\pi/2} \sin^2(x) dx$. Find a maximum bound for the error in each case. Compare your approximations with the actual result. (10)

Page 2 of 2

(10)