

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100		
NOTE: (i)		Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and			
	(•••)	ONE Question from SECTION-C. AL		c . 1. c	•
	(ii)		n must be attempted at one place instead o	f at diff	teren
	(iii)	places. Write O No in the Answer Book in ac	cordance with O No in the O Paper		
	(iv)	Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must			
		be crossed.	I C		
	(v)		art of the attempted question will not be con-	sidered.	
	(vi)	Use of Calculator is allowed.			
		<u>SECT</u>	<u>FION-A</u>		
Q. 1.	(a)	Let G and G' be two groups and $f: G$	$\rightarrow G'$ be a homomorphism then prove the	(10)	
		following:			
		(i) $f(e) = e'$ where e and e' a	re the identities of G and G' respectively		
		(ii) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in C$	3		
	(b)	Prove that every homomorphic image of	of a group is isomorphic to some quotient	(10)	(20
		group.			
Q. 2.	(a)	A ring <i>R</i> is without zero divisor if and o	only if the cancellation law hold.	(10)	
	(b)	Prove that arbitrary intersection of subr	ings is a subring	(10)	(20
				~ /	,
Q. 3.	(a)	Let $T: R^3 \longrightarrow R^3$ be the linear trans	formation defined by	(10)	
		$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3, x_2 + x_3)$	x_3). Find a basis and dimension of Range		
		of T.			
	(b)	Prove that every finitely generated vect	or space has a basis	(10)	(20
	(0)	The that every minery generated veel		(10)	(20
		SECT	<u>CION-B</u>		
Q. 4.	(a)	Find the critical points of $f(x) = x^3$.	-12x-5 and identify the open intervals	(10)	
		on which f is increasing and on which	j is decreasing.		
	(b)	Find the horizontal and vertical asympt	otes of the graph of $f(x) = -\frac{8}{3}$	(10)	(20
	(0)		$x^2 - 4$	(10)	(20
		2		(10)	
Q. 5.	(a)	Calculate $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$.		(10)	
	(b)	Find $\frac{\partial W}{\partial x}$ at the point $(x, y, z) = (2, -1, 1)$) if $w = x^2 + y^2 + z^2$, $z^3 - xy + yz + y^3 = 1$	(10)	(20
		and x and y are the independent variable x			
		and x and y are the independent variable			

- **Q. 6.** (a) Determine the focus, vertex and directrix of the parabola $x^2 + 6x 8y + 17 = 0$ (10)
 - (b) Find polar coordinates of the point *p* whose rectangular coordinates are (10) (20) $(3\sqrt{2}, -3\sqrt{2})$

Page 1 of 2

SECTION-C

Q.7. (a) Show that
$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$
 for all integers *n*. (10)

(b) Find the n, nth roots of unity. (10) (20)

Q. 8. (a) Find the Taylor series generated by $f(\mathbf{x}) = \frac{1}{x}$ at a = 2. Where, if anywhere, (10) does the series converge to $\frac{1}{x}$?

(b) Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, (*p* a real constant) converges if p > 1, and (10) (20) diverges if P < 1

Result.pk