

Answer Sheet No. \qquad Sign. of Candidate \qquad Sign. of Invigilator \qquad

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.
Q. 1 Fill the relevant bubble for each part. Each part carries one mark.

1. Which one of the following states transitions is valid?
A. Ready to Blocked
B. Blocked to Running
C. Running to Ready
D. Terminated to Running

2. Which one of the following types of processing has grouped transactions, executed in a sequence?
A. Real-time
\bigcirc
B. Batch
C. Time-sharing
\bigcirc
D. Distributed
\bigcirc
3. Which one of the following DOS commands is used to display content of the directory?
A. DIR

B. CD

IW
\bigcirc
4. Identify the type of system conversion in which the old system is directly replaced by the new system:
A. Pilot
\bigcirc
B. Parallel
C. Direct
\bigcirc
D. Phased

5. If $a=10 ; b=a++; \quad$ what will be the value stored in b ?
A. $\quad 1$
\bigcirc
B. 9
C. 10
D. 11
\bigcirc
6. Which one of the following statements transfers the control to the start of loop body?
A. Switch
\bigcirc
B. Continue
C. Break
D. Exit
\bigcirc
7. If $x=5$, which one of the following accesses the seventh element stored in an array A?
A. $\mathrm{A}[\mathrm{x}++]$
\bigcirc
B. $A[++x]$
C. $A[7]$
D. $A[x]$

Page 1 of 2
8. The phenomenon of having two or more functions in a program with the same name but different numbers and types of parameters is called:
A. Inline functionB. Nested function
C. Function overloading
D. Recursive function
9. The dereference operator is denoted by:
A. *B. \&
\bigcirc
C. **
\bigcirc
D. \&\&
\bigcirc
10. Which one of the following indicates the address of a variable "temp" of type float?
A. float temp\&
\bigcirc
B. \&temp

11. Which one of the following is the default access specifier of $\mathrm{C}++$ class?
A. Private
B. Public
C. Protected
\bigcirc
D. Default
\bigcirc
12. The ability of a class to hide the information from outside interference and misuse is called:
A. Encapsulation
\bigcirc
B. Polymorphism
C. InheritanceD. Abstraction
\bigcirc
13. Which one of the following classes inherits the base class capabilities?
A. Abstract
\bigcirc
B. Parent
C. Super
D. Child

14. Identify the header file needed to read, write, and manipulate the file:
A. Ifstream
C. Istream
\bigcirc
B. Ofstream

15. Which one of the following functions is used to write a single character to a file?
A. $\operatorname{get}()$
C. put()
B. gets ()

Federal Board HSSC-II Examination
Computer Science Model Question Paper
(Curriculum 2009)
Time allowed: 2.40 hours
Total Marks: 60
Note: Answer any twelve parts from Section 'B' and attempt any three questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 36)

Q. 2 Attempt any TWELVE parts from the following. All parts carry equal marks. $(12 \times 3=36)$
i. Briefly write down three functions of an Operating System.
ii. Differentiate between process and thread along with one example of each. $(2+1)$
iii. Write down the reasons of the following invalid variable names:
iv. What will be the output of the following program segment? int $\mathrm{x}=3, \mathrm{y}=17$; cout $\ll x / y \ll y / x \ll(y / x)+(x \% y) ;$
v. Write down the output of the following statements: $\quad(1+1+1)$
i. $\quad(x>0) \& \&(y<10) \quad$ where $x=5, y=5$
ii. $\quad 13+21 \% 4-2$
iii. \quad int $\mathrm{m}=2, \mathrm{n}=4$;
m * $=2$;
$\mathrm{n}+=\mathrm{m}$;
vi. Write a $\mathrm{C}++$ program that prints sum of squares of integers from 1 to 10 . (3)
vii. Rewrite the following program segment using conditional operator.

viii. Compare strcpy() and strcat() functions with examples.
ix. Rewrite the program segment after removing errors:
int a $\{10\}$, i;
cout >>" enter ten numbers ;

$$
\text { for }(i=1 ; i<10: i++)
$$

$\operatorname{cin} \ll \mathrm{a}\{\mathrm{i}\} ;$
x. List three advantages of using function overloading in a program.
xi. Write down the syntax of function prototype for the following functions: $(1+1+1)$
a. A function named table with one integer parameter by value.
b. A function named area with no parameters and returns a float.
c. A function named large with two floating point numbers by reference.
xii. If $\mathbf{p t r}$ is a pointer variable, what will be the difference among the following statements?
(1.5+1.5)

$$
\begin{aligned}
& \text { cout } \ll \text { ptr ; } \\
& \text { cout } \ll * \text { ptr ; }
\end{aligned}
$$

Page 1 of 2
xiii. Define public and private access specifier.
xiv. Define a class Student that contains private and public data members including function get ().
xv. Write down the use of $\operatorname{bof}()$ and eof() functions.
xvi. Write down the purpose of any three modes of file opening.

SECTION - C (Marks 24)

Note: Attempt any THREE questions. All questions carry equal marks.
Q. 3 What are the objectives of System Development Life Cycle? Explain the following phases of SDLC: $(2+3+3)$
Feasibility
Requirement
Engineering
Q. 4 i. Describe any two types of loops.
ii. Write a $\mathrm{C}++$ program that reads a number and prints whether it is prime or composite.
Q. 5 Determine the output of the following C++ program and fill the columns of the given table.
$(2+3+3)$
void main(void)
\{

```
            int a \([6]=\{12,27,36,55,72,83\}\);
            int \(\mathrm{i}, \mathrm{s}=0, \mathrm{v}=0\);
            for ( \(\mathrm{i}=0 ; \mathrm{i}<=5 ; \mathrm{i}++\) )
            \{
                \(\operatorname{if}(\mathrm{a}[\mathrm{i}] \% 3=0)\)
            \{
                cout<<a [i];
```

 \(\mathrm{s}=\mathrm{s}+\mathrm{a}[\mathrm{i}] ;\)
 \(\mathrm{v}=\mathrm{s} * 3-\mathrm{a}[\mathrm{i}] \% 7\);

\}			
\mathbf{i} alil	\mathbf{s}	\mathbf{v}	
0			
1			
2			
3			
4			
5			

Q. 6 Write a $\mathrm{C}++$ program to calculate the factorial of a number. The program inputs a number and pass it by reference to a user-defined function factorial.

COMPUTER SCIENCE HSSC-II

Student Learning Outcomes

(Curriculum 2009)

$\begin{aligned} & \hline \mathbf{S r} \\ & \text { No } \end{aligned}$	Section: Q. No. (Part no.)	Contents and Scope	Student Learning Outcomes *	Cognitive Level **	Allocated Marks in Model Paper
1	A: 1(i)	1.3 Process Management	ii) Describe the new, running, waiting/blocked, ready and terminated states of a process	U	1
2	A:1(ii)	1.1 Introduction to Operating System	iii) Explain the following types of operating system: • Batch processing Operating System • Multiprogramming Operating System • Multi-tasking Operating System • Time -Sharing Operating System • Real-Time Operating System \bullet Multiprocessor Operating System \bullet Parallel Processing Operating Systems • Distributed Operating Systems Embedded Operating System	U	1
3	A: 1(iii)	1.1 Introduction to Operating System	ii) Describe commonly used operating systems (DOS, Windows, Unix, Macintosh)	U	1
4	A: 1(iv)	2.1 System Development Life Cycle	v) Explain the following: Deployment/Implementation	K	1
5	A: 1(v)	3.4 Operators in C++	i) Define the following operators and show their use with examples: Increment and decrement operators (++ , --) - Prefix Postfix	U	1
6	A: 1(vi)	4.2 Loops	ii) Use continue statement	U	1
7	A: 1(vii)	5.1 Introduction	iii) Explain the following terms related to arrays • Size of array \cdot Name of array \bullet Index	U	1
8	A: 1(viii)	6.3 Function overloading	iii) Understand the use of function overloading with: • Number of arguments • Data types of arguments - Return types	K	1
9	A: 1(ix)	7.1 Pointers	iv) Know the use of dereference operator (*)	K	1
10	A: 1(x)	7.1 Pointers	ii) Understand memory addresses iii) Know the use of reference operator (\&)	U	1
11	A: 1(xi)	8.1 Classes	iii) Understand and access specifier: Private • Public	U	1
12	A: 1(xii)	8.1 Classes	iv) Know the concept of data hiding	K	1
13	A: 1(xiii)	8.1 Classes	vii) Understand the concept of following only with daily life examples: Inheritance	U	1
14	A: 1(xiv)	9.1 File Handling	ii) Open the file \bullet Modes of opening file	K	1
15	A: 1(xv)	9.1 File	Use the following streams • Single	K	1

		Handling	character		
16	B: 2(i)	1.2 Operating System Functions	Describe the following main functions of operating system: \bullet Process Management - Memory Management File Management • I/O System Management • Secondary Storage Management • Network Management • Protection System •CommandInterpreter	K	3
17	B: 2(ii)	1.3 Process Management	iii) Differentiate between: • Thread and process	U	$2+1$
18	B: 2(iii)	$3.2 \mathrm{C}++$ Constants and Variables	i) Explain the difference between constant and variable ii) Explain the rules for specifying variable names	U	3
19	B: 2(iv)	$\begin{array}{\|l} \hline 3.2 \mathrm{C}++ \\ \text { Constants } \\ \text { and } \\ \text { Variables } \\ 3.4 \\ \text { Operators } \\ \text { in C++ } \\ \hline \end{array}$	vi) Use type casting i) Define the following operators and show their use with examples: Arithmetic operators (+, -, *, /, \%)	U	1+1+1
20	B: 2(v)	$\begin{array}{\|l\|} \hline 3.4 \\ \text { Operators } \\ \text { in C }++ \\ \hline \end{array}$	iv) Define and explain the order of precedence of operators	U	1+1+1
21	B: 2(vi)	4.2 Loops	i) Explain the use of the following looping structures: • For • While • Do-while	A	3
22	B: 2(vii)	3.4 Operators in C++ 4.1 Decisions	i) Define the following operators and show their use with examples: Ternary operator (?:) i) Explain the use of the following decision statements: If-else	U	3
23	B: 2(viii)	5.3 Strings	iv) Explain the most commonly used string functions	U	1+2
24	B: 2(ix)	5.1 Introduction	v) Explain how to access and write at an index in an array	U	3
25	B: 2(x)	6.3 Function overloading	ii) Know advantages of function overloading	K	3
26	B: 2(xi)	6.1 Functions	iv) Explain the following terms related to functions • Function prototype • Function definition • Function call	U	1+1+1
27	B: 2(xii)	7.1 Pointers	ii) Understand memory addresses iv) Know the use of dereference operator (*)	U	$1.5+1.5$
28	B: 2(xiii)	8.1 Classes	iii) Understand and access specifier: - Private • Public	K	3
29	B: 2(xiv)	8.1 Classes	iii) Understand and access specifier: - Private • Public	A	3
30	B: 2(xv)	9.1 File Handling	iii) Know the concept of \bullet BOF \bullet EOF	K	$1.5+1.5$
31	B: 2(xvi)	9.1 File Handling	ii) Open the file \bullet Modes of opening file	K	3
32	C: 3	2.1 System Development Life Cycle	iii) Describe objectives of SDLC v) Explain the following: • Feasibility - Requirement Engineering	K	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 3 \\ \hline \end{array}$
33	C: 4	4.1 Decisions	i) Explain the use of the following decision statements: •Else-if	U+A	1+3

		4.2 Loops	ii) Explain the use of the following looping structures: \cdot For \bullet While \bullet do- While		$1+3$
34	C:5	5.1 Introduction	iv) Explain how to define and initialize an array of different sizes and data types v) Explain how to access and write at an index in an array vi) Explain how to traverse an array using all loop structures	U	2
35	C:6	6.2 Passing arguments and returning values	Bass the arguments: $\operatorname{Constants~} \bullet$ By value \bullet By reference	A	3

* Student Learning Outcomes

National Curriculum for Computer Sciences Grades IX-XII, 2009
(Page no. 26-36)

**Cognitive Level

K: Knowledge
U: Understanding
A: Application
Result.pk

COMPUTER SCIENCE HSSC-II

Table of Specifications

Assessment Objectives		Unit 1: Operating System 10\%	Unit 2: System Development Life Cycle 10\%	Unit 3: Object Oriented Programming Using C++ 10\%	Unit 4: Control Structure 15\%	Unit 5: Arrays and Strings 15\%	Unit 6: Functions 15\%	Unit 7: Pointers 5\%	Unit 8: Objects and Classes 10\%	Unit 9: File Handling 10\%	Marks	Total marks (75 Theory + 25 Practical)	\% age
Knowledge based	Section - A		1-4-(01)				1-8-(01)	1-9-(01)	1-12-(01)	$\begin{array}{\|l\|} \hline 1-14-(01) \\ 1-15-(01) \\ \hline \end{array}$	6	29	30.5\%
	Section - B	2-i-(03)					2-x-(03)		2-xiii-(03)	$\begin{aligned} & 2-x v-(03) \\ & 2-x v i-(03) \end{aligned}$	15		
	Section - C		3(08)								8		
Understanding based	Section - A	$\begin{array}{\|l\|} \hline 1-1-(01) \\ 1-2-(01) \\ 1-3-(01) \\ \hline \end{array}$		1-5-(01)	1-6-(01)	1-7-(01)		1-10-(01)	$\begin{aligned} & \hline 1-11-(01) \\ & 1-13-(01) \end{aligned}$		9	48	50.5\%
	Section - B	2-ii-(03)		$\begin{aligned} & \text { 2-iii-(03) } \\ & 2-\mathrm{iv-}(03) \\ & 2-\mathrm{v}-(03) \\ & \hline \end{aligned}$	2-vii-(03)	$\begin{aligned} & \text { 2-viii-(03) } \\ & \text { 2-ix-(03) } \end{aligned}$	2-xi-(03)	2-xii-(03)			27		
	Section - C				4(04)	5(08)					12		
Application based	Section - A			-	=	Z					0	18	19\%
	Section - B				2-vi-(03)				2-xiv-(03)		6		
	Section-C		-	\bigcirc	4(04)	-	6(08)				12		
Total marks		9	9	10	15	15	15	5	9	8	95		100\%

KEY: 1-1-(01)
Question No - Part No - (Allocated Marks)

