V	Version No.		Version No.				
0	0	0	0				
1	1	1	1				
2	2	2	2				
3	3	3	3				
4	4	4	4				
5	5	5	5				
6	6	6	6				
7	7	7	7				
8	8	8	8				
9	9	9	9				

CHEMISTRY HSSC-II SECTION – A (Marks 17) Time allowed: 25 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

1.	The first ionization energy is higher for the:											
	А.	Alkali metals	0	B.	Alkaline earth me	tals 🔿						
	C.	Halogens	Ō	D.	Noble gases	Ō						
2.	Crimson red is characteristic flame color of:											
۷.	A.	Li		B.	Na	\cap						
	C.	Ca	ŏ	D.	Ba	Ŏ						
3.	3. The catalyst used for synthesis of ammonia by Haber process is:											
	А.	Fe C		В.		Q						
	C.	Cr_2O_3	\bigcirc	D.	ZnO	0						
4.	Aerosols and lotions are used as:											
	A.	Fungicides	\bigcirc	B.	Repellents	0						
	C.	Herbicides	Ŏ	D.	Miticides	Ŏ						
5.	5. Due to inert pair effect oxidation state is more stable than											
5.	A.	2+,4+		B.	1+,4+	an for Pb.						
	C.	4+,2+	X	D. D.	2+,3+	X						
	C.		\bigcirc	D.	2,55	\bigcirc						
6.	Ozon	e is destroyed by:	_			_						
	А.	SO_2	Q	В.	CO_2	Q						
	C.	CFCs	0	D.	HCl	0						
7.	Which one of the following is used as reference in NMR spectroscopy?											
, .	A. Tetra chloromethane \bigcirc B. Tetra methylsilane \bigcirc											
	C.	Tetra silanemetha	¥	D.	Tri iodomethane	ŏ						
			\cup			\smile						

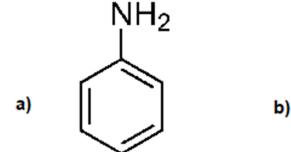
Page 1 of 2

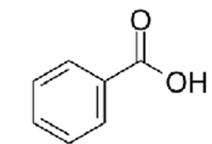
8.		one of the follomagnetic radiations IR spectroscopy Mass spectroscopy	with matt	1	e does not invol NMR spectroscopy UV spectroscopy		eraction	of
9.	Benzo A. C.	ic acid is obtained b m-Xylene Toluene	y oxidatio O O	n of: B. D.	p-Xylene Phenol	00		
10.	The str A. C.	ructural formula for RCOOCOR RCOOR	carboxylic O O	e anhyd B. D.	ride is: RCOR RCOOH	0		
11.	Which A. C.	one of the followin H ₂ O BF ₃	g is not a 1 O O	nucleop B. D.	hile? H ₂ S NH ₃	00		
12.	Oxoniv A. B. C. D.	um ion is formed wh Ethanol react with Phenol react with M Ether is treated with Ethanol treated with	Na metal NaOH h HI					
13.	Which A. C.	one of the followin Grignard reagent Fehling's reagent	g reagents	reacts v B. D.	with both aldehyde a Tollen's reagent Benedict's reagent	and keto	one?	
14.	Which A. C.	one of the followin H ₂ /Ni NaBH ₄	g reagents	is used B. D.	for reduction of car H ₂ /Pt LiAlH ₄	boxylic	acid?	
15.	Which A. C.	one of the followin Fatty acid Proteins	g is used a	ls major B. D.	component of soap Palm oil Saccharides	? 0 0		
16.	IUPAC A. C.	C name of Glutaric a Butane dioic acid Propane dioic acid	Q	В. D.	Pentane dioic acid Hexane dioic acid	<u> </u>		
17.	Which A. C.	one of the followin C^{12} O^{16}	g nuclei is O O	NMR a B. D.	c ¹³ Ne ¹⁰	00		

Page 2 of 2

Time allowed: 2:35 hours

Total Marks: 68


Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.


SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. The thermal stability of carbonates of alkaline earth metals increases down the group. Justify this behaviour.
- ii. The order as reducing agent of Halide ions is $F \le CI \le Br \le I$. Interpret it.
- iii. Ammonia act as both ligand and base. Justify this statement by the reaction with copper ion.
- iv. What are ligands? Give example of tridentate and hexadentate ligand.
- v. How will you prepare glycerol from hydrolysis and saponification of fats and oils?
- vi. How can nylon-6,6 be prepared from Adipic acid? Give complete chemical reaction.
- vii. How does tetraethyl lead cause air pollution?
- viii. What are the oxidation number and coordination number of the metals in the following complex compounds?
 (a) [Cr(H₂O)₄(OH)₂]NO₃
 (b) K₄[Fe(CN)₆]
- ix. What information are obtained from number of peaks and area under the peaks in NMR spectrum?
- x. What are adhesives? How does hot Glue work?
- xi. Summarize the concept of optical Isomerism by drawing different isomeric structures of tartaric acid showing their optical behaviour.
- xii. How will you prepare following compounds starting from acetylene?a. Acetaldehyde b. Acetic acid
- xiii. The following mono substituted benzene are subjected to nitration reaction. Prioritize the positions of different products formed.

Page 1 of 2

- xiv. Give stereo chemical evidences of Nucleophilic Substitution reactions of alkyl halides.
- xv. Identify the products when CH₃MgBr react with ethyl acetate? Give its mechanism.
- xvi. How Lucas Test being employed to distinguish different types of alcohols?
- xvii. Compare acidity of phenols and carboxylic acid. Support your answer by drawing resonance structures?
- xviii. Discuss the reactivity order of following carbonyl compounds with reason. Formaldehyde > Acetaldehyde > Butanone
- xix. How can the following acid derivative be prepared from carboxylic acid? a.Acid anhydride b. Acyl halide c. Acid amide
- xx. How can propanoic acid be prepared from ethane?

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Describe the peculiar behavior of 1st member of the alkaline earth metals. Give seven main differences. (7)
 - b. How does arrangement of electrons affect the magnetic properties of transition elements. How can it be calculated? Calculate magnetic moment of Fe = 26.

Q.4 a. Define isomerism. Make all possible structural isomers of C₄H₁₀O, classify each giving IUPAC names. (1+2+2+2)

- b. What are the possible products formed when formaldehyde reacts with the following reagents? (6)
 - i. HCN ii. NaOH iii. AgNO₃/NH₄OH

Q.5 a. What is beta-elimination reaction? Explain reaction mechanism for the Unimolecular and Bimolecular elimination reactions of R - X. (1+3+3)
b. Explain the following: (3+3)

- i. The different routes for the loss of zinc from human body.
- ii. Is carbon dioxide responsible for greenhouse effect? If yes then how?

* * * * *

Page 2 of 2

CHEMISTRY HSSC-II SLOs

SECTION A

- 1. Describe how physical properties like ionization energy changes within a group and period in the periodic table?
- 2. Perform flame tests and explain the appearance of colors in the flame.
- **3.** Iron as a catalyst in Haber's Process. (Describe the important reactions and uses of V, Cr, Mn, Fe and Cu)
- 4. Pesticides.
- 5. Inert pair effect and formation of ionic bond.
- 6. Describe the role of CFCs in destroying ozone in the stratosphere.
- 7. Describe the standard scales used in proton NMR.
- 8. Outline the use of MS determination of relative isotopic masses and isotopic abundance.
- 9. Describe addition reactions of benzene and methyl benzene.
- **10.** Describe reactions of carboxylic acid derivatives.
- 11. Describe the mechanism and types of nucleophilic substitution reaction.
- **12.** Describe the preparation of phenol from benzene sulphonic acid, chloro benzene and acidic oxidation of Cumene.
- **13.** Describe oxidation reactions of aldehydes and ketones.
- 14. Describe the reactivity of carboxylic acid.
- 15. Identify the nutritional and biological importance of lipids.
- 16. Nomenclature of carboxylic acid.
- 17. Outline in simple terms the principles of proton NMR spectroscopy.

Section B

Q2:

- i. Discuss the trends in thermal stability of the nitrates and carbonates of Group II elements.
- **ii.** Explain the relative behavior of halogens as oxidizing agents and reducing agents.
- iii. Describe important reactions and uses of copper.
- iv. Explain nomenclature of coordination compounds.
- v. Describe basics of classification and structure-function relationship of lipids.
- vi. Describe the formation and uses of Nylon.
- vii. Recognize that the release of COx, SOx, NOx, VOCs are associated with the combination of hydro carbon based fuels.
- viii. Explain nomenclature of coordination compounds.
- **ix.** Explain how chemical environment of proton affects the magnetic field it experiences and hence the absorption of energy at resonance frequency.
- **x.** Describe types and applications of synthetic adhesives.
- **xi.** Explain what is meant by a chiral center and show that such a center gives rise to optical isomerism.
- xii. Discuss chemistry of Alkynes by hydrogenation, ozonolysis, hydration etc.

- **xiii.** Apply the knowledge of position of substituent in the electrophilic substitution of benzene.
- xiv. Describe the mechanism and types of nucleophilic substitution reactions.
- xv. Discuss chemistry of Grignard's reagent by the addition of esters.
- **xvi.** Explain the reactivity of alcohols.
- **xvii.** Explain the acidity of phenols.
- xviii. Describe the reactivity of Aldehydes and Ketones and their comparison.
- xix. Describe the chemistry of carboxylic acids by conversion to carboxylic acid derivatives.
- xx. Describe preparation of carboxylic acid by carbonation of Grignard's reagent.

SECTION C

Q3:

- **a.** Differentiate beryllium from other members of its group.
- **b.** Magnetic properties of transition elements. (Describe the electronic structures of elements and ions of d-block elements)

Q4:

- **a.** Define and explain with suitable examples the terms isomerism and structural isomerism.
- **b.** Describe acid and base catalyzed addition reactions of aldehydes and ketones.

Q5:

- **a.** Describe the mechanism and types of elimination reactions.
- **b.** i. Identify the sources of minerals such as zinc. ii. Explain greenhouse effect and global warming as resulting in climate change.

CHEMISTRY HSSC-II TABLE OF SPECIFICATION

•	s and p block elements	d and f block elements	Organic compounds	Hydro carbons	Alkyl halides and amines	Alcohol phenyl and ether	Aldehyde and ketones	Carboxy lic acids	Bio chemistry		Environm ental chemistry	Analytical chemistry	Total marks for each Assessment Objective	%age
(Knowledg e based)	1-2(01) 3a(07)	1-3(01) 2-iii(03) 2-iv(03)	1-10(01)		2-xiv(03)		1-13(01) 4b(06)	1-14(01)		1-4(01)	1-6(01)	1-7(01)	30	25.9%
(Understa nding based)	1-1(01) 1-5(01) 2-ii(03)	3b(06)		2-xi(03) 4a(07)	1-11(01) 2-xv (03) 5a(07)	1-12(01) 2-xvi(03) 2-xvii(03)	2-xviii(03)	2-xix(03) 2-xx(03)	1-15(01) 2-v(03)	2-vi(03) 2-x(03)	2-vii(03)	1-8(01) 1-17(01)	63	54.3%
(Applicati on based)	2-i(03)	2-viii(03)		1-9(01) 2-xii(03) 2-xiii(03)				1-16(01)	5b-i(03)		5b-ii(03)	2-ix(03)	23	19.8%
Total marks for each Topic/Sub topic	16	16	01	17	14	07	10	08	07	07	07	06	116	100%

KEY:

1-1(01) Question No-Part No. (Allocated Marks)