Version No.			
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

PHYSICS SSC–II SECTION – A (Marks 12) Time allowed: 15 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. All parts carry one mark.

(1)	In vacuum, all electromagnetic waves have the same:									
	A.	Speed	0	B.	Amplitude	0				
	C.	Frequency	0	D.	Wavelength	0				
(2)	The relationship between speed, frequency and wavelength of a wave is known as:									
	А. С.	Wave equation SHM equation	00	B. D.	Frequency equation Wavelength equation	00				
(3)	Which of the following forms of wave is "sound"?									
	A.	Electrical	0	В.	Longitudinal	0				
	C.	Transverse	Ō	D.	Magnetic	Ō				
(4) If a ray of light in a glass is incident on an air surface at an angle greater critical angle, the ray will:										
	A.	Refract only	0	B.	Reflect only	0				
	C.	Partially reflect &	refract ()	D.	Diffract only	0				
(5) According to Coulomb's law, if distance between charges increase attraction:						e force of				
	A.	Will be increased	0	B.	Will be decreased	0				
	C.	Will be unchanged	Ň	D.	Will become repulsion	Ŏ				
(6)	When	we apply more volt	age to an c	hmic co	onductor, we get:					
	A.	More resistance	Õ	B.	More flow of current	0				
	C.	Decrease in power	Ō	D	Less flow of current	Ō				
(7)	Electromagnetism is the study of:									
	A.	Magnetic effect of	current () В.	Flow of protons	0				
	C.	Flow of electrons	C) D.	Flow of neutrons	0				
			Page 1 o	of 2						

(8)	Logic g A. C.	gates are used in: LDRs Analogue circuits	00	B. D.	DC circuits House safety	0
(9)	Which commu A. C.	one of the follow inication between a Microwaves Sound waves	ing is the n orbiting	most s satellite B. D.	suitable means of re and Earth? Radio waves Any light wave	eliable continuous
(10)	Which A. C.	one of the followin α - Particle γ - Particle	g particles	has the B. D.	greatest penetrating β- Particle Proton	g power?
(11)	What i A. C.	s the voltage across 2 V 18 V	a 6 Ω resi	stor wh B. D.	en 3A of current pas 9 V 36 V	sses through it?
(12)	If the t A. C.	urn ratio of a step-u $I_s = 10 I_p$ N _s = 10 N _p	p transforr O O	ner is 1 B. D.	0. It means: $N_{s} = \frac{N_{P}}{10}$ $V_{p} = 10V_{s}$	0 0

Resul	t.p	k
-------	-----	---

Page 2 of 2

Time allowed: 2.45 hours

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 33)

- Q.2 Attempt any ELEVEN parts from the following. All parts carry equal marks. (11×3=33)
 - i. A pendulum of length 1m and period 2.01s is placed at the top of Mount Everest having an altitude of 8849m. Calculate the value of 'g' at that point.
 - ii. If the concave mirror produces a real image of an object, will the image be necessarily inverted?
 - iii. Is the restoring force on a mass attached to spring in SHM ever zero? If so, where?
 - iv. How can a body be negatively charged by electrostatic induction?
 - v. Does increasing the frequency of wave also increases its wavelength? If not, how are these quantities related?
 - vi. Will two wires carrying current in the same direction repel or attract each other? Give reason.
 - vii. Write down differences between conductors and insulators.
 - viii. How is an ammeter connected with a device to measure current? Support your answer with reason.
 - ix. What do you understand by digital and analogue quantities?
 - x. Why are some elements radioactive but some are not?
 - xi. How electronic mail is preferred over traditional communication?
 - xii. Explain whether the atomic number can increase during nuclear decay. Support your answer with an example.
 - xiii. Why is an electron beam deflected when passes through a magnetic field?
 - xiv. How can we find the direction of magnetic field of a current carrying conductor?
 - xv. Describe electrostatic painting of cars.

SECTION – C (Marks 20)

Note: Attempt any TWO questions. All questions carry equal marks. $(2 \times$

 $(2 \times 10 = 20)$

- Q.3 a. With the help of electroscope, how can you achieve the following: (3x2=6)
 - i. The detection of charge on a body.
 - ii. Determining the nature of charge.

Page 1 of 2

	b.	iii. Investigating whether the body under test is conductor or insulator. An object is placed at a distance of 20cm in front of a convex mirror forms image 10cm behind the mirror. What is its focal length?	s an (4)
Q.4	a. b.	Discuss the main features of parallel combination of resistors. What are the basic Logic Gates? Give symbols and truth tables of any two.	(6)
			(4)
Q.5	a. b	Explain the working of transformer in connection with mutual induction. Describe types of transformer.	(6)
	υ.	be left after 66.9 years?	(4)

* * * * *

Result.pk

Page 2 of 2

PHYSICS SSC-II MODEL QUESTION PAPER SLOs (Curriculum 2006)

SECTION - A

Q.1 Choose the correct answer A/B/C/D by filling the relevant bubble for each question.

- distinguish between mechanical and electromagnetic waves. (1)
 - (2) Derive equation $v=f \lambda$.
 - (3) Describe the longitudinal nature of sound waves (as a series of compressions and rarefactions).
 - (4) State the conditions for total internal reflection.
 - (5) State and explain Coulomb's law.
 - Describe Ohm's law and its limitations. (6)
 - Explain by describing an experiment that an electric current in a conductor (7) produces a magnetic field around it.
 - Describe the simple uses of logic gates. (8)
 - (9) Explain briefly the transmission of
 - a. electric signals through wires
 - b. radiowaves through air
 - c. light signals through optical fibres
 - (10)State, for radioactive emissions:
 - a. their nature
 - b. their relative ionizing effects
 - c. their relative penetrating abilities.
 - Describe Ohm's law and its limitations. (11)
 - (12)Identify that a transformer works on the principle of mutual induction between two coils.

SECTION-B

Attempt any ELEVEN parts from the following. All parts carry equal marks. (11×3=33) 0.2 Solve problems by using the formula $T = 2\pi \sqrt{1/g}$ for simple pendulum. i.

- ii.
- Solve problems of image location by spherical mirrors by using mirror formula.
- Explain SHM with different examples. iii.
- Describe experiments to show electrostatic charging by induction. iv.
- Derive equation $v=f \lambda$. v.
- Explain by describing an experiment that an electric current in a conductor vi. produces a magnetic field around it.
- vii. Distinguish between conductors and insulators.
- viii. Describe the use of electrical measuring devices like galvanometer, ammeter and voltmeter (construction and working principles not required).
- ix. Differentiate between analogue and digital electronics.
- Explain that an element may change into another element when radioactivity х. occurs.
- Compare the advantages of high technology communication devices with the xi. traditional system through internet search.
- xii. Represent changes in the composition of the nucleus by symbolic equations when alpha or beta particles are emitted.
- Describe the effect of magnetic field on an electron beam. xiii.

- xiv. Explain by describing an experiment that an electric current in a conductor produces a magnetic field around it.
- xv. Describe the use of electrostatic charging.

SECTION-C

- **Q.3** a. Describe the construction and working principle of electroscope.
 - b. Solve problems of image location by spherical mirrors by using mirror formula
- **Q.4** a. Construct simple series (single path) and parallel circuits (multiple paths).
 - b. Identify and draw the symbols for the logic gates (NOT, OR, AND, NOR and NAND).
- Q.5 a. Identify that a transformer works on the principle of mutual induction between two coils.
 - b. Explain the meaning of half life of a radioactive material.

Result.pk

PHYSICS SSC-II TABLE OF SPECIFICATION

Assessment	Unit 10:	Unit 11:	Unit 12:	Unit 13:	Unit 14:	Unit 15:	Unit 16:	Unit 17:	Unit 18:	Total	Percentage
Knowledge based	Q 1 (1): 1 Q 1 (2): 1	Q 1(3): 1			Q 2 (vii): 3 Q 4(a): 6	Q1(7): 1 Q2(xiv): 3	Q4(b): 4 Q2(ix): 3	Q1(9): 1	Q1(10): 1	25	28.7%
Understanding based	Q2(i): 3 Q2(iii): 3	Q 2 (v): 3	Q1(4): 1 Q2(ii): 3 Q3(b): 4	Q 1 (5): 1 Q 3 (a): 6	Q 1(11): 1	Q2(vi): 3 Q5 (a): 6	Q 1(8): 1 Q2(xiii): 3		Q2(x): 3 Q5(b): 4	45	51.7%
Application based				Q 2(iv): 3	Q 1(6): 1 Q 2(viii): 3	Q 1(12): 1 Q2(xv): 3		Q 2 (xi): 3	Q2(xii): 3	17	19.5%
Total marks	8	4	8	10	14	17	11	4	11	87	100%

KEY:

: Result pk Question No (Part No.): Allocated Marks