MATHEMATICS Part-II Time: 20 Minutes Marks: 20 Multiple Choice Questions 01 Mark for each	Paper Code ② ③	Roll No. of the Student Serial No. Of the Answer Book		
Note: 1) Attempting all MCQs is compulsory. This paper along 2) Fill the circle (© ©), which one is correct with blue of the circle in the OMR sheet is filled then	ue or black ball p	heet must be returned to the	ne superintendent after due time. Is in separate OMR Sheet like	

TN.	0	٠	0	٠
1.3	u		v	٠

I.i.	If $f(x)=e^x$, then f^x	·1(x)=	a 1			* A*	
	(A) e ^x	В	e ^{-x}	0	<u>1</u>	(b)	ln _x
ii.	The graph of ax+	by+c=0 is					
	Straight line	B	Parabola	0	Ellipse	0	Hyperbola
iii.	$F(x) = \frac{2x+1}{x(x+3)}$ is di	scontinous at	x=				0
	(A) (0.2)	(B)	(3.2)	©	(-3,1)	0	(-3,0)
iv.	$\frac{1}{1+x^2}$ is the deriva (A) $\sin^{-1}x$	te of					
	Sin⁻¹x	(B)	Cos-1x	0	Tan ⁻¹ x	(D)	Cot-1x
v.	$\frac{d}{dx}\left(\sin\frac{a}{x}\right) = $			- Z			
	\bigcirc Cos $\frac{a}{x}$		-Sin a	0	$\frac{1}{a} \cos \frac{a}{x}$	<u></u>	$\frac{-a}{x^2}$ Cos $\frac{a}{x}$
	5050 Mec		X	9	a cos x	•	X ² X
VI.	$\lim_{X \to \infty} \left(1 + \frac{1}{X}\right)^{X} = $				24		
5544	(A) (D)	B	1	©	е	0	00
V11.	$\int \frac{dx}{1+x^2} = \underline{\qquad}$ (A) -Tan ⁻¹ x+c		0 1		m - l		01
	() -lan'x+c	₿	-Cot ⁻¹ x+c	0	Tan-1x+c	(D)	Cot ⁻¹ x+c
VIII.	$\int \frac{1}{\sqrt{x}} dx = \underline{\qquad}$	-	1				1
		(B)	$2\sqrt{\frac{1}{X}} + C$	0	2√x +c	(0)	$\frac{1}{\sqrt{X}} + c$
1X.	If $\tan \Theta = \frac{m1-m2}{1+m1m2}$				Called to a Carlo		_
26	(A) Acute		Obtuse	(0)	Right	(0)	Zero
х.	$\int_{A}^{1} x^{3} dx = \underline{\qquad}$		0	6	2	0	
vi	$\int_{0}^{b} F(x) dx = \underline{\hspace{1cm}}$		0	0	3	0	4
A1.			م م	0	$\int_{-b}^{-b} F(x) dx$	6	Ca.
			$\int_{0}^{\infty} F(x) dx$		J F(X)dX	(b)	$\int_{b}^{a} F(x) dx$
X11.	The distance betw				100	6	
viii		B f a triangle are	2√2	0	√2 · · · ·	(b)	√5
AIII.	Angle bisectors of Parallel		Perpendicular	6	Collinear	<u></u>	Concurrent
kiv.	The two straight I						
11.	\triangle h ² -ab>0		h ² -ab<0	5-172X	h ² -ab=0	(D)	$h^2+ab=0$
۲۷.	The centre of circ				11-40-0	0	11 140 0
51.5	(2,1)		(2,-1)		(1,2)	(D)	(-2,1)
cvi.	The asymptotes of	f the hyperbol	$a \frac{x^2}{4} - \frac{y^2}{3} = 1$ are		(-,-/		(-,-,
	The asymptotes of $X = \pm \frac{3}{2}y$	B)	$Y = \pm \frac{3}{2} X$	((0)	$X = \pm \frac{2}{3}y$	0	$Y = \pm \frac{2}{3} X$
cvii.	The line y=mx+c (A) $\pm \sqrt{a^2m^2-b^2}$	should touch	the ellipse $\frac{x^2}{x^2} + \frac{y^2}{y^2}$	=1 if c=	3		3
	$\pm \sqrt{a^2m^2-b^2}$	B	$\pm a\sqrt{1+m^2}$ a^2 b^2	©	$\pm \int_{a^2+b^2}$	0	$\pm \sqrt{a^2m^2+b^2}$
cviii.	The conic is calle						320
	♠ e=0	В	e<1	0	e>1	(D)	e=1
kix.	The degree of diff	ferential equat	$\frac{dy}{dx} = xy^2 + xy$				
	A 0	B	1	0	2	0	3
XX.	If $F(x,y)=x+y+xy$	- <u> </u>	•	222	- X	34253	
	A 1+y	B	X	©	1+x	0	у

MATHEMATICS Part-II

Note: Time allowed for section B and C is 2 hours and 40 minutes.

SECTION "B"

Marks: 50

II. Attempt any Ten Parts out of the following. Each Part carries equal marks.

- i. If f(x) = 4x + 1 and $g(x) = 2x^2 + 5x$. Find g[f(x)] and f[g(x)].
- Evaluate $\lim_{x \to 1} \left(\frac{x^2 + 3x + 2}{x^2 + y + 2} \right)^2$. ii.
- Differentiate $y=x^2-6x+5$ by first principle rule. iii.
- Find $\frac{dy}{dx}$, if y=sin x cos x. iv.
- Find $\frac{dy}{dx}$, if $y = \log[\sin(\log x)]$. v.
- Evaluate $\int \frac{\cos^2 x}{\cos x} dx$ by substitution. vi.
- Use integration by parts to evaluate f Tan-1xdx. vii.
- Evaluate $\int (x-3)e^x dx$. viii.
- Show that the points A(0,-2), B(3,1), C(0,4) & D(-3,1) are the vertices of a square ABCD. ix.
- Find the point of intersection of the line 3x-4y+20=0 & the circle $x^2+y^2=25$. X.
- Find the tangent equation to parabola x²=y which makes an angle of 45° with the x-axis. xi.
- Find the normal equation at a point (0,2) to ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. xii.
- For what value of C, the line y=-x+c will touch the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$. xiii.

SECTION "C"

Marks: 30

Note: Attempt any Three questions of the following. Each question carries equal Marks.

- Find x,so that $\log_b x + \log_b (x-4) = \log_b 21$. III. a)
 - Solve $\int \frac{dx}{\sin^2 x} = -\cot x + C$ b)
- If V=2i-j+5K & W=i+2j-3K are vector function, evaluate $\frac{d}{dt}$ (v+tw). IV.
 - Find the equation of line, if the x-intercept & y-intercept of the line are x:(4,0), y:(0,6). b)
- V. Find the point of intersection P(x,y) of the pair of lines 2x+4y-10=0, 5x-3y+1=0. a)
 - Find the equation of the tangents to the circle x²+y²=2, which makes an angle of 45° b) with the x-axis.
- VI. a)
- Solve initial value problems $2 \frac{dy}{dx} = 4xe^{-x}$, y(0) = 42. Verify Euler's theorem for the function $F(x,y) = \frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{3}} + y^{\frac{1}{3}}}$. b)