

BOARD OF INTERMEDIATE & SECONDARY EDUCATION, HYDERABAD SINDH

Excellence - Equity - Empathy Marks: 75 MATHEMATICS MODEL PAPER (CLASS IX) Time: 2 Hours (Condensed Syllabus) **SECTION "A"** MULTIPLE CHOICE QUESTIONS (MCQs) Marks 37 Q1: Choose the correct answer. $\{0,1,2,3,...\}$ is the set of ___ (i) (d) Odd numbers (c) Whole numbers (b) Integers (a) Natural numbers Set of all real numbers between 1 and 2 is ___ (ii) (d) None of these (b) Infinite set (a) Empty set $\sqrt{2}$ is ______ .number. (b) ev (iii) (d) irrational (c) rational (iv) (d) 15 $x^2 + xyz + 4$ is a polynomial of degree _____ (c) 4 (v) (d) 8 $v^3 + z^3 =$ (vi) (b) $(y-z)(y^2+2yz+z^2)$ (a) $(y-z)(y^2+yz+z^2)$ $(d)(y+z)(y^2-yz+z^2)$ $(c)\left(y+z\right)\left(y^2+2yz+z^2\right)$ One and only one _____ can pass through three non-collinear points.

(a) Line (b) Plane (c) Line segment (d) Ray (vii) Supplement of 70° is

(a) 20° (b) -70° (viii) (d) 110° Which of the following is not a convex set. (ix) (d) Plane (c) Circle (b) Line segment A triangle having no sides congruent, is called _____ __ triangle . (x) (c) Equilateral (d) Right (b) Scalene (a) Isosceles If a transversal intersects two parallel lines ,the _____ angles are congruent. (xi) (c) Adjacent (d) Alternate. (b) Exterior (a) Interior Sum of all angles of a triangle is _____ (xii) (d) 40° (c) 90° (a) 360° (5x-9)(5x+9) =(xiii) (d) $25x^2 + 81$ (c) $25x^2 - 81$ (b) $5x^2 + 81$ (a) $5x^2 - 81$ The characteristic of log 56.34 is _____ (xiv) (d)3(b) 1 The natural logarithm has the base _____. (xv) (d)0 $(x-y)^3 =$ (xvi) (a) $x^3 - y^3 - 3xy$ (b) $x^3 + y^3 - 3xy$

(c) $x^3 + y^3 - 3xy(x - y)$ (d) $x^3 - y^3 - 3xy(x - y)$ A parallelogram whose each angle is right angle, is called (xvii) (d) None of these (c) Trapezoid (b) Rectangle lines can pass through a point. (xviii) (c) One (d) No If (x+5,1+y)=(7,2) then values of x and y are ____ respectively. (xix) (d) none of these (b) 2 and 1 (a) 1 and 3

(xx)	The point $(-2,7)$ is located inq	uadrant.	
	(a) First (b) Second	(c) Third	(d) Fourth
	The ordinate of any point on x-axis is always (a) Non-zero (b) Zero		(d) Positive
(xxii)	(a) 1 is multiplicative identity in set of (b) 0	real numbers. (c) -1	(d) None of these
(xxiii)	The expression $x^2 \times 5y - 3$ is (a) Monomial (b) Trinomial	(c) Binomial	(d) All of these
(xxiv)	(a) Monomial (b) Trinomial The H.C.F of $6x^3y^2$ and $4x^2y^3$ is (a) $6x^3y^3$ (b) $6x^2y^2$		(d) $4x^2y^2$
	(a) $6x^3y^3$ (b) $6x^2y^4$	(c) $2x^2y^2$	(d) 4x y
	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{is} $ matrix.		
(xxv)	(a) Square . matrix. (b) Scalar	(c) Unit	(d) All of these
(xxvi)			(d) Non-singular
(xxvii)	$(x+y)^2 - (x-y)^2 =$		
	(a) $2(x+y)^2$ (b) x^2+y^2	(c) $2(x^2 + y^2)$	(d) 4xy
(xxviii)	The order of the matrix $\begin{bmatrix} 0 & 0 \end{bmatrix}$ is	 (c) 2×1	(d) 1×1
(xxix)	If two adjacent angles are supplementary th	nen their non-common arms a	re (d) Perpendicular
(xxx)	(a) Coincident The sum of two complementary angles is e (a) 90 (b) 180	qual to degrees.	(d) 100
(xxxi)	$ \sqrt{3} $ is surd of order (b) 2	(c) 3	(d) None of these
	$\frac{\sqrt{256} - \sqrt{144}}{2}$	`,	
(xxxii)	$\sqrt{16}$ $\frac{\sqrt{18}}{\sqrt{18}}$.	(c) 1	(d) none of these
	(a) 10 (b) 5 $\sqrt[3]{125}$ =	(6) 1	(a) none of these
(xxxiii	(a) 50 (b) 25	(c) 15	(d) 5
(xxxiv	Factors of $2x^3 + 2y^3$ are		
((a) $(x+y)(x^2-xy+y^2)$	(b) $2(x+y)(x^2-xy+y^2)$	•
	(c) $(x-y)(x^2 + xy + y^2)$	(d) $2(x-y)(x^2+xy+y^2)$)
(xxxv)	If $\log_2 x = 6$ then x is equal to	(c) 32	(d) 16
(xxxvi	In a right triangle, the acute angles are		
Corre	(a) Supplementary (b) Alternate sponding	(c) complete	
	i) The sum of two supplementary angles is ea	qual to degrees	
(XXXVI	(a) 90 (b) 180	(c) 360 (d) 100	

BOARD OF INTERMEDIATE & SECONDARY EDUCATION, HYDERABAD

Time: 2 Hours

Excellence – Equity – Empathy
MATHEMATICS MODEL PAPER CLASS: IX

Marks: 75

SECTION B

Marks 24

NOTE: <u>Attempt any SIX from the following .Each question carries 4 marks.</u>

- Q.2 If a,b represent elements of Z^+ , find the domain and range of the relation $R = \{(a,b) | 2a+b=10\}$.
- Q.3 If $U = \{1, 2, 3, ..., 20\}$, $A = \{1, 3, 5, ..., 19\}$ and $B = \{2, 4, 6, ..., 20\}$ then prove any one of the De Morgan's Laws.
- Q.4 If $x = \sqrt{5} + 2$ then find the value of $x^4 + \frac{1}{x^4}$.
- Q.5 Find the value of $\frac{\sqrt{431.5} \times (1.2)^2}{\sqrt[3]{36.98}}$ using logarithms.
- Q.6 Find the value of $8ab(a^2+b^2)$ when a+b=5 and a-b=-5.
- Q.7 What should be subtracted from $2x^4 + 3x^3 x^2 1$ so that it becomes exactly divisible by x-2?
- Q.8 Find the value of $27x^3 \frac{1}{x^3}$ when $3x \frac{1}{x} = 2$.
- Q.9 Factorize any two: (i) $x^4 + 4$ (ii) $6x^2 + 11x 10$ (iii) $2x^3 250y^3$.

SECTION C LONG QUESTIONS

Marks 14

Note: Attempt any ONE (a & b) from the following.

- Q.10 (b) Define any two of the following with figures.
 - (i) Line segment (ii) Adjacent angles
- (iii) Ray
- (b) Apply Cramer's Rule to solve the system of equations:

$$4x - 3y = 7$$
$$5x + 2y = 3$$

- Q.13 (a) If two lines intersect, the vertical angles so formed are congruent.

 Prove it.
 - (b) If $A = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$ then find A^{-1} and verify that $AA^{-1} = I$.