BOARD OF INTERMEDIATE EDUCATION, KARACHI

Bakhtiari Youth Center, North Nazimabad, Karachi - 74700 http://www.facebook.com/BIEKarachi/
Website: www.biek.edu.pk

MATHEMATICS PAPER-I
(MODEL PAPER)
Annual Examination 2021
(Science Pre -Engineering \& Science General Groups)

Max marks: 50 SECTION.A.(Multiple Choice Questions) Time: 30 minutes
NOTE: This question consists $\mathbf{2 5}$ parts question and all are to be answered Each question carries TWO marks.
Q.1. Select the correct answer from the given options.
(i) Let $\mathrm{A}=\{0,1\}, \mathrm{B}=\{1,2\}, \mathrm{C}=\{2,3\}$ then $\mathrm{A} x(\mathrm{~B} \cap \mathrm{C})=$ $* \phi *\{(1,3),(0,1)\} *\{(0,2),(1,2)\} *\{(2,3),(1,1)\}$
(ii) If $A \& B$ be subsets of a set U such that $A \cup B=U$, then the sets $\mathrm{A} \& \mathrm{~B}$ are called

* Exhaustive sets * Disjoint sets * Equal sets * Unequal sets
(iii) Multiplicative inverse of $\mathrm{z}=3-4 \mathrm{i}$ is

$$
* \frac{3}{5}+\frac{i 4}{5} * \frac{3}{5}-\frac{i 4}{5} * \frac{3}{25}+\frac{i 4}{25} *-\frac{3}{5}-\frac{4}{5} i
$$

(iv) Factors of $4 x^{2}+9 y^{2}$ are

$$
\begin{aligned}
& *(2 \mathrm{x}+\mathrm{i} 3 \mathrm{y})(2 \mathrm{x}-\mathrm{i} 3 \mathrm{y}) *(2 \mathrm{x}+3 \mathrm{y})(2 \mathrm{x}-3 \mathrm{y}) *(2 \mathrm{x}+3 \mathrm{iy})^{2} \\
& *(4 \mathrm{x}+9 \mathrm{yi})(4 \mathrm{x}-9 \mathrm{yi}) \text { MEDIATE EDUCAT/O }
\end{aligned}
$$

(v) If $\mathrm{z}_{1}=3+2 \mathrm{i}$ and $\mathrm{z}_{2}=5-2 \mathrm{i}$, then real part of $\mathrm{z}_{1} \mathrm{z}_{2}$ is

$$
* 4 *-19 *-4 * 19
$$

(vi) If $b^{2}-4 a c<0$, then the roots of a quadratic equation are *equal and complex $\quad *$ unequal and complex $*$ equal and real * unequal and real
(vii) The product of all cube roots of 27 is

$$
\text { * zero * } 1 \quad * 27 * \omega
$$

(viii) 3 is a root of an equation
$* y^{2}-5 \mathrm{y}+6=0 * \mathrm{y}^{2}+5 \mathrm{y}-6=0 * \mathrm{y}^{2}+7 \mathrm{y}+12=0 * \mathrm{y}^{2}+4 \mathrm{y}+3=0$
(ix) If α, β are the roots of the equation $y^{2}-5 y+9=0$, then value

$$
\begin{aligned}
& \text { of } \sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}} \text { is } \\
& * 0 * \frac{5}{9} * \frac{5}{3} * \frac{9}{5}
\end{aligned}
$$

(x) Sum of n terms of $2,4,6, \ldots$. is

$$
* \quad \mathrm{n}^{2}+\mathrm{n} \quad * \mathrm{n}^{2} \quad * \frac{n}{2} \quad * n^{2}-n
$$

(xi) $1, x^{2}, 6-x^{2}$ will form a G.P for $x=$ * 2 * 4 * $8 \quad * \sqrt{2}$
(xii) The H.M b/w $1 / 2 \& 1 / 4$ is

$$
* \frac{1}{6} \quad * \frac{1}{8} \quad * \frac{1}{3}
$$

(xiii) If $1 / 15,1 / 20,1 / 25$ are in H.P then $15,20,25$ are in

* H.P * A.P
* G.P
both A.P and H.P
(xiv) How many ways can 7 persons be seated at a round table?

$$
* 6!\quad * 7!\quad *{ }^{7} \mathrm{P}_{7} \quad *{ }^{7} \mathrm{C}_{7}
$$

(xv) If $(a+b)^{11}$, then it will contain

$$
* 11 \text { terms } \quad * 13 \text { terms } * 10 \text { terms } * 12 \text { terms }
$$

(xvi) If $(a+b)^{13}$, then middle terms/middle term will be * 7th term \& 8th term *8th term \& 9th term * 7th term KAR*8th term
 * $a^{n-r} b^{r}$
(xviii) Arc length of semi circle of a unit circle is * 2π * $3 \pi * \pi * 1$
(xix) $\operatorname{Sin} 2 \theta=$
${ }^{*} 1+2 \operatorname{Sin}^{2} \theta \quad{ }^{*} 2 \operatorname{Cos}^{2} \theta-1 * \operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta{ }^{*} 2 \operatorname{Sin} \theta \operatorname{Cos} \theta$
(xx) $\operatorname{Cos} u-\operatorname{Cos} v=$

* $2 \operatorname{Cos} \frac{u+v}{2} \operatorname{Sin} \frac{u-v}{2} \quad * 2 \operatorname{Sin} \frac{u+v}{2} \operatorname{Cos} \frac{u-v}{2} * 2 \operatorname{Cos} \frac{u+v}{2} \operatorname{Cos} \frac{u-v}{2}$
* - $2 \operatorname{Sin} \frac{u+v}{2} \operatorname{Sin} \frac{u-v}{2}$
(xxi) $\operatorname{Tan}\left(\frac{\pi}{2}+\theta\right)=$

$$
*-\operatorname{Cot} \theta \quad * \operatorname{Cos} \theta \quad *-\operatorname{Sin} \theta \quad * \tan \theta
$$

(xxii)) In a $\Delta \mathrm{ABC}, \mathrm{a}=\mathrm{b}=\mathrm{c}$, then $\Delta=$

$$
\text { * } \frac{\sqrt{3}}{3} a \quad * \frac{\sqrt{3}}{2} a \quad * \frac{\sqrt{3}}{4} a \quad * \frac{\sqrt{3}}{4} a^{2}
$$

(xxiii) In a $\triangle \mathrm{ABC}$, if angle A is at standard position, then Law of cosine

$$
* a^{2}=b^{2}+c^{2}-b c \operatorname{Cos} \alpha * a^{2}=b^{2}+c^{2}+2 b c \operatorname{Cos} \alpha * b^{2}=a^{2}+c^{2}-b c
$$

$\operatorname{Cos} \alpha$

$$
* a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} \alpha
$$

(xxiv) In any $\triangle \mathrm{ABC} \quad \operatorname{Sin} \frac{\alpha}{2}=\ldots$.

$$
* \sqrt{\frac{(s-b)(s-c)}{b c}} * \sqrt{\frac{(s-a)(s-b)}{a b}} * \sqrt{\frac{(s-a)(s-c)}{a c}} * \frac{\Delta}{s-a}
$$

(xxv)) If $\operatorname{Sinx}=\frac{1}{2}$, then $\mathrm{x}=$

$$
* \frac{\pi}{3}, \frac{2 \pi}{3} * \frac{\pi}{6}, \frac{5 \pi}{6} * \frac{\pi}{2},-\frac{\pi}{2} * \frac{\pi}{4}, \frac{-\pi}{4}
$$

SECTION. B.

SHORT -ANSWER QUESTIONS (30 Marks)

Note: Answer any six part questions from this section, selecting two parts questions from each question.

Complex Number and Algebra

Q.2. (i) Solve the complex equation $(x+2 y i)^{2}=x$ i
(ii) Show that $1+i$ and $1-i$ satisfy the equation $z^{2}-2 z+2=0$
(iii) Find all the cube roots of 125 , also show that their sum is zero and their product is 125 .
(iv) If α, β are the roots of $8 x^{2}-6 x+3=0$, form an equation whose roots are $\alpha-3, \beta-3$.
Q.3. (i) If ${ }^{\mathrm{n}} \mathrm{P}_{3}=12{ }^{\frac{n}{2}} P_{3}$, find n .
(ii) The $2^{\text {nd }}, 31^{\text {st }}$ and the last term of an A.P are $\frac{31}{4}, \frac{1}{2}$ and $\frac{-13}{2}$ respectively. Find the number of terms.
(iii) Find the sum of the $1^{\text {st }} \mathrm{n}$ terms of $5+55+555+$
(iv) Prove by mathematical induction

$$
\begin{aligned}
& 1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots \ldots \ldots(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1), \\
& \forall \mathrm{n} \varepsilon N .
\end{aligned}
$$

Trigonometry

Q.4. (i) If a point on the rim of a 16 cm diameter fly wheel travels 7000 meters in a minute, through how many radians does the wheel turn in two seconds.
(ii) Prove that $1+\cot ^{2} \frac{\pi}{3}=\operatorname{Cosec}^{2} \frac{\pi}{3}$
(iii) For any triangle ABC , Derive law of tangent

For any triangle $\mathrm{ABC} \Delta=\sqrt{s(s-a)(s-b)(s-c)}$
(iv) Solve $\quad 2 \operatorname{Sin}^{2} x+2 \sqrt{2} \operatorname{Sin} x-3=0$

SECTION . C.(DETAILED-ANSWER QUESTIONS) (20 Marks)

Note: Attempt any two questions from this sectioon
Q.5. (i) Which term of the H.P $6,2, \frac{6}{5}, \ldots \ldots$ is equal to $\frac{2}{33}$?
(ii) Find the term independent of x in $\left(\sqrt{x}-\frac{2}{x^{2}}\right)^{10}$

OR

Find the middle term in the expansion of $\left(\frac{a}{y}-\frac{y}{a}\right)^{12}$
Q.6. (i) Three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ form a triangle such that ratio of the measure of their angles is $1: 2: 3$, find the ratio of length of the sides.
(ii) Solve the system of the equations

$$
\mathrm{x}+\mathrm{y}=5 \quad, \quad \frac{3}{x}+\frac{2}{y}=2
$$

Q.7. (i) Prove that (any two)
(a) $\operatorname{Cos} 4 x=8 \operatorname{Cos}^{4} x-8 \operatorname{Cos}^{2} x+1$
(b) $\frac{\sin \theta+\sin \varphi}{\sin \theta-\sin \varphi}=\frac{\tan \frac{\theta+\varphi}{2}}{\tan \frac{\theta-\varphi}{2}}$ (c) $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2$
(ii) The measure of the two sides of a triangle are 4 and 5 units. Find the third side so that the area of the triangle is 6 square units.

OR

In the expansion of $\left(x^{2}+\frac{1}{x}\right)^{m} ; m \in N$, the binomial coefficients of the fourth and the thirteenth terms are equal to each other, find the eleventh term.

