

BOARD OF INTERMEDIATE EDUCATION, KARACHI

Bakhtiari Youth Center, North Nazimabad, Karachi - 74700 http://www.facebook.com/BIEKarachi/

Website: www.biek.edu.pk

MATHEMATICS PAPER-I (MODEL PAPER)

Annual Examination 2021

(Science Pre - Engineering & Science General Groups)

Max marks: 50 SECTION. A. (Multiple Choice Questions) Time: 30 minutes

NOTE: This question consists 25 parts question and all are to be answered Each question carries TWO marks.

Q.1. Select the correct answer from the given options.

(i) Let
$$A = \{0, 1\}, B = \{1, 2\}, C = \{2, 3\}$$
 then $A \times (B \cap C) = \{0, 1\}, \{(1, 3), (0, 1)\} * \{(0, 2), (1, 2)\} * \{(2, 3), (1, 1)\}$

- (ii) If A & B be subsets of a set U such that $A \cup B = U$, then the sets A & B are called
 - * Exhaustive sets * Disjoint sets * Equal sets * Unequal sets
- (iii) Multiplicative inverse of z = 3-4i is

*
$$\frac{3}{5} + \frac{i4}{5}$$
 * $\frac{3}{5} - \frac{i4}{5}$ * $\frac{3}{25} + \frac{i4}{25}$ * $-\frac{3}{5} - \frac{4}{5}i$

(iv) Factors of $4x^2 + 9y^2$ are

*
$$(2x + i3y)(2x - i3y)$$
 * $(2x + 3y)(2x - 3y)$ * $(2x + 3iy)^2$

*
$$(4x + 9yi) (4x - 9yi)$$
 MEDIATE EDUCAT

(v) If
$$z_1 = 3 + 2i$$
 and $z_2 = 5 - 2i$, then real part of z_1, z_2 is $4 + 19 + 19 + 19$

- (vi) If $b^2 4ac < 0$, then the roots of a quadratic equation are *equal and complex * unequal and complex * unequal and real
- (vii) The product of all cube roots of 27 is

* zero * 1 * 27 * ω

(viii) 3 is a root of an equation
*
$$y^2 - 5y + 6 = 0$$
 * $y^2 + 5y - 6 = 0$ * $y^2 + 7y + 12 = 0$ * $y^2 + 4y + 3 = 0$

(ix) If α , β are the roots of the equation y^2 - $5\,y$ + 9 = 0 , then value

of
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}}$$
 is
*0 * $\frac{5}{9}$ * $\frac{5}{3}$ * $\frac{9}{5}$

- (x) Sum of n terms of 2, 4, 6, is * $n^2 + n$ * n^2 * $\frac{n}{2}$ * $n^2 - n$
- (xi) $1, x^2, 6-x^2$ will form a G.P for x = 2 * 4 * 8 * $\sqrt{2}$
- (xii) The H.M b/w $\frac{1}{2} & \frac{1}{4}$ is $\frac{1}{6} & \frac{1}{8} & \frac{1}{3} & \frac{1}{5}$
- (xiii) If 1/15,1/20, 1/25 are in H.P then 15,20,25 are in H.P then both A.P and H.P
- (xiv) How many ways can 7 persons be seated at a round table? *6! *7! * $^{7}P_{7}$ * $^{7}C_{7}$
- (xv) If (a+b)¹¹, then it will contain *11 terms * 13 terms * 10 terms * 12 terms
- (xvi) If (a+b)¹³, then middle terms/middle term will be * 7th term & 8th term *8th term & 9th term * 7th term *8th term
- (xvii) If $(a+b)^n$; $n \in N$, then $T_{r+1} = ?$ (r = 0,1,2,...n) ${}^{n}C_{r}$ a^{n} b^{n-r} ${}^{*}{}^{n}C_{r+1}$ a^{n-r} b^{r} ${}^{*}{}^{n}C_{r}$ a^{n-r} b^{r} *
- (xviii) Arc length of semi circle of a unit circle is $*2\pi *3\pi *\pi *1$

(xix) $\sin 2\theta =$ *1 + 2 $\sin^2 \theta$ *2 $\cos^2 \theta - 1 * \cos^2 \theta + \sin^2 \theta * 2 \sin \theta \cos \theta$

- (xx) $\cos u \cos v =$ * $2 \cos \frac{u+v}{2} \sin \frac{u-v}{2}$ * $2 \sin \frac{u+v}{2} \cos \frac{u-v}{2} * 2 \cos \frac{u+v}{2} \cos \frac{u-v}{2}$ * $2 \sin \frac{u+v}{2} \sin \frac{u-v}{2}$
- (xxi) Tan $(\frac{\pi}{2} + \theta) =$ $* \cot \theta * \cos \theta * \sin \theta * \tan \theta$

(xxii)) In a $\triangle ABC$, a = b = c , then $\triangle =$ $* \frac{\sqrt{3}}{3}a * \frac{\sqrt{3}}{2}a * \frac{\sqrt{3}}{4}a * \frac{\sqrt{3}}{4}a^2$

(xxiii) In a $\triangle ABC$, if angle A is at standard position, then Law of cosine $* a^2 = b^2 + c^2 - bc \, Cos\alpha * a^2 = b^2 + c^2 + 2bc \, Cos\alpha * b^2 = a^2 + c^2 - bc \, Cos\alpha$

* $a^2 = b^2 + c^2 - 2bc \cos \alpha$

(xxiv) In any $\triangle ABC$ Sin $\frac{\alpha}{2} = \dots$ $* \sqrt{\frac{(s-b)(s-c)}{bc}} * \sqrt{\frac{(s-a)(s-b)}{ab}} * \sqrt{\frac{(s-a)(s-c)}{ac}} * \frac{\Delta}{s-a}$

(xxv)) If Sinx = $\frac{1}{2}$, then x = $\frac{\pi}{3}$, $\frac{2\pi}{3}$ * $\frac{\pi}{6}$, $\frac{5\pi}{6}$ * $\frac{\pi}{2}$, $\frac{\pi}{2}$ * $\frac{\pi}{4}$, $\frac{-\pi}{4}$

SECTION. B. **SHORT -ANSWER QUESTIONS (30 Marks)**

Note: Answer any six part questions from this section, selecting two parts questions from each question.

Complex Number and Algebra

- Q.2. (i) Solve the complex equation $(x + 2y i)^2 = x i$
 - (ii) Show that 1+i and 1-i satisfy the equation $z^2-2z+2=0$
 - (iii) Find all the cube roots of 125, also show that their sum is zero and their product is 125.
 - (iv) If α , β are the roots of $8x^2 6x + 3 = 0$, form an equation
- whose roots are $\alpha-3$, $\beta-3$. Q.3. (i) If ${}^{n}P_{3}=12$ $\frac{\frac{n}{2}}{{}^{2}P_{3}}$, find n. (ii) The 2^{nd} , 31^{st} and the last term of an A.P are $\frac{31}{4}$, $\frac{1}{2}$ and $\frac{-13}{2}$ respectively. Find the number of terms.
 - (iii) Find the sum of the 1^{st} n terms of $5 + 55 + 555 + \dots$
 - (iv) Prove by mathematical induction

Prove by mathematical induction
$$1^{2} + 3^{2} + 5^{2} + \dots (2 n - 1)^{2} = \frac{1}{3} n (2 n - 1) (2 n + 1),$$

$$\forall n \in \mathbb{N}.$$

Trigonometry

- Q.4. (i) If a point on the rim of a 16 cm diameter fly wheel travels 7000 meters in a minute, through how many radians does the wheel turn in two seconds.
 - (ii) Prove that $1 + \cot^2 \frac{\pi}{3} = \operatorname{Cosec}^2 \frac{\pi}{3}$ (iii) For any triangle ABC, Derive law of tangent
 - BORRDO

For any triangle ABC
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

 $2 \sin^2 x + 2 \sqrt{2} \sin x - 3 = 0$ Solve (iv)

SECTION . C .(DETAILED-ANSWER QUESTIONS) (20 Marks) Note: Attempt any two questions from this sectioon

- Q.5. (i) Which term of the H.P 6, 2, $\frac{6}{5}$, is equal to $\frac{2}{33}$?
 - (ii) Find the term independent of x in $\left(\sqrt{x} \frac{2}{x^2}\right)^{10}$ OR

Find the middle term in the expansion of $\left(\frac{a}{y} - \frac{y}{a}\right)^{12}$

- Q.6. (i) Three points A, B, C form a triangle such that ratio of the measure of their angles is 1:2:3, find the ratio of length of the sides.
 - (ii) Solve the system of the equations

$$x + y = 5 \qquad , \qquad \frac{3}{x} + \frac{2}{y} = 2$$

- Q.7. (i) Prove that (any two)
 - (a) $\cos 4x = 8 \cos^4 x 8 \cos^2 x + 1$

$$(b) \frac{\sin\theta + \sin\varphi}{\sin\theta - \sin\varphi} = \frac{\tan\frac{\theta + \varphi}{2}}{\tan\frac{\theta - \varphi}{2}} (c) \frac{\sin3\theta}{\sin\theta} - \frac{\cos3\theta}{\cos\theta} = 2$$

(ii) The measure of the two sides of a triangle are 4 and 5 units. Find the third side so that the area of the triangle is 6 square units.

یان OR

In the expansion of $(x^2 + \frac{1}{x})^m$; $m \in N$, the binomial coefficients of the fourth and the thirteenth terms are equal to each other, find the eleventh term.

