

17)

A.

C.

Aniline - water

Benzene - water

CHEMISTRY HSSC-I SECTION - A (Marks 17)

Time allowed: 25 Minutes Version Number 3 0 9 4 Note: Section - A is compulsory. All parts of this section are to be answered on the separately provided

Q. 1	Cent Choo	re Super se the c	<u>intendent. Dele</u>	ting/ove \ / B / C	erwriting is not / D by filling the	allowed e releva	<u>l. Do not use lea</u> ant bubble for ea	id pend ach que	estion on the OMR	
						iicic, L	acii part carries	One m	ai K.	
	1)		lpy of combustion		determined by:					
		A.	Bomb calorime			В. -	Copper calorir			
	2)	C.	Coffee-cup cal			D.	Glass calorime	eter		
	2)	А.	- Haber cycle is a		o determine:	D	Dandeness			
		C.	Lattice energy Hydration ener			B. D.	Bond energy Potential energy	av.		
	3)		is added with S i		to halance the fo		·			
	4)	A.	$2H^+, 1e^-$ of the following	B.	$2H^{+},3e^{-}$	C.	$2H^{+}, 4e^{-}$	-	$2H^+, 2e^-$	
	•,	Α.	10 <i>g</i> of <i>NO</i>	_			$10g ext{ of } N_2O_4$	ח	$10g$ of N_2O	
	5)		Ü		_		- ·		- ~	
	5)			_					of Butane (C_4H_{10}) ?	
	C)	A.	8	В.	6.5	C.	13	D.	4.5	
	6)		of the following				4.6	_	-	
		A.	4 <i>d</i>	B.	6 <i>s</i>	C.	4 <i>f</i>	D.	5 <i>p</i>	
	7)		fast neutrons are		_				itted?	
		A.	β -rays	B.	γ -rays	C.	X -rays	D.	lpha -rays	
	8)	The C	- H bond length	will be	greater when the	hybridi	zation of carbon	is:		
		A.	sp^2	B.	sp^3	C.	dsp^3	D.	sp	
	9)	One a	tmosphere press	ure is e	qual to:					
		A.	101.325 <i>Pa</i>	B.	101.325 Bars	C.	$101325 \frac{N}{m^2}$	D.	101325 <i>Kpa</i>	
	10)	ln whi	ch of the followin	g pairs,	both gases will o	diffuse a	it the same rate?			
		A.	$H_{\scriptscriptstyle 2}$ & $H\!e$	В.	$N_2 \& CO$	C.	$CO \& CO_2$	D.	$O_2 \& SO_2$	
	11)	Which	of the following,	require	s least energy fo	r vapori	zation?			
		A.	Cl_2	B.	Br_2	C.	I_2	D.	F_2	
	12)	Sodiu	m chloride exists	in cubic	and octahedral	forms.	This phenomena	is calle	d:	
		A.	Polymorphism	B.	Allotropy	C.	Anisotropy	D.	Isomerism	
	.13)	A reaction will proceed in forward direction in order to attain equilibrium when ($Q=$ reactio $K_c=$ equilibrium constant)								
		A.	$Q < K_c$	В.	$Q = K_c$	C.	$Q = \frac{1}{2}K_c$	D.	$Q > K_c$	
	14)	pH of	0.001 M <i>NaOH</i>	solution	n is:					
		A.	10 ⁻³	B.	11	C.	10 ⁻¹¹	D.	3	
	15)	Which	of the following	compou	nds will produce	acidic s	solution on hydro	lysis?		
		A.	KNO ₃	В.	NaCl	C.	NH_4NO_3	D.	NaCN	
	16)	The u	nits of rate const	ant and	the rate of reacti	on will k	oe the same whe	n order	of reaction is:	
		Δ	2	В	3	С	Zero	D.	1	

В.

D.

Nicotine - water

Phenol – water

Which of the following is NOT a pair of partially miscible liquids?

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B, C and D: 68

NOTE: The Questions of sections B, C and D are to be answered on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 21)

(Chapters 1 to 6)

Q. 2 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) Calculate the number of molecules of O_2 produced by thermal decomposition of 490 g $KClO_3$. (Atomic masses K=39 g / mol , Cl=35.5 g / mol , O=16 g / mol)
- (ii) Define limiting reactant. Why is the concept of limiting reactant not applicable to the reversible reactions?
- (iii) Calculate the mass of an electron with the help of its charge and e/m ratio.
- (iv) Explain the geometries of $PbCl_2 \& SO_3$ on the basis of VSEPR theory.
- (v) Write down the defects of Valence bond theory.
- (vi) Draw molecular orbital diagram for N_2 molecule and calculate its bond order.
- (vii) What is an isotherm? How is it affected by change in temperature? Give reason.
- (viii) Write down any three uses of liquid crystals.
- (ix) Define lattice energy giving an example. Write down the factors affecting the lattice energy.
- (X) What is cleavage plane? Give an example. Why is cleavage an anisotropic property?

SECTION - C (Marks 21)

(Chapters 7 to 12)

Q. 3 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) State common ion effect and give an example.
- (ii) Justify that CaO is a basic oxide whereas Al_2O_3 is an amphoteric oxide.
- (iii) Define buffer solution. Write down its types, giving one example for each.
- (iv) What is a first order reaction? Give two examples.
- (v) Differentiate between hydrophilic and hydrophobic molecules, giving one example of each.
- (vi) Define molarity, molality and mole fraction.
- (vii) Write down any three properties of colloids.
- (viii) What is the internal energy of a system? Justify that internal energy is a state function.
- (ix) Define enthalpy of atomization, enthalpy of solution, enthalpy of neutralization.
- (x) What is galvanizing? How does it protect iron from corrosion?

SECTION - D (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(13 \times 2 = 26)$

(Question 4 from Chapters 1 to 6)

- Q. 4 a. Derive general gas equation. How can this equation can be modified to determine the molar mass and density of a gas?
 - b. Define London dispersion forces. How are these forces produced in Helium gas? Also describe the factors affecting the London dispersion forces. (1+1.5+4.5)

(Question 5 from Chapters 7 to 12)

- Q. 5 a. State Le-Chatlier's principle. Apply this principle to describe the effects of decrease in concentration of SO_3 , increase in temperature and increase in pressure on the following reactions at equilibrium. $2SO_2 + O_2 \rightleftharpoons 2SO_3$ $\Delta H = -198$ kj / mol (1+6)
 - b. Define catalysis. How does a catalyst increase the rate of a chemical reaction? Also differentiate
 between homogenous and heterogeneous catalysis. (1+2+3)

(Question 6 Part (a) from Chapters 1 to 6 and Part (b) from Chapters 7 to 12)

- Q. 6 a. Drive an expression for the radius of nth orbit of hydrogen atom. (06)
 - b. What is a galvanic cells? Explain the construction and working of Zn/Cu cell. Write down the
 cell reaction and calculate the cell potential of this cell.

(2) 120 推進 (1) 多数超过20 多年中期的第三人

engender og en e kyrkelige blev

63 - 655

·

to an element

. . .

.

.

1

•

CHEMISTRY HSSC-I SECTION - A (Marks 17)

īme	allow	ed: 25	Minutes				Versi	on Numi	per 3	0 !	9 8
ote:	OMR	Answei	Sheet which	first 25 minu	answered on the separately provided 25 minutes and handed over to the not use lead pencil.						
. 1	Choose the correct answer A / B / C / D by filling the relevant bubble for each question on the OMR Answer Sheet according to the instructions given there. Each part carries one mark.										
	1)	Which	enthalpy chang	je is alwa	ys positive?						
		A.	Enthalpy of co	mbustion	1	В.	Enthalpy of	neutraliza	tion		
		C.	Enthalpy of so	olution		D.	Enthalpy of	atomizatio	on		
	2)										
		A.	H_2O	B.	NaCl	C.	ZnO	D.	N_{2}		
	3)		tion state of Nitr			•	. 7		. •		
	4)	A. The m	+3	B.	+4	C.	+5	D.	+2		
	4)	A.	mass of $11.2dm^3$ $22g$	B.	anciosed in a t	Container C.	33 g	D.	44 9	7	
	5)		228 series of specti		•		_		`	,	
	,	Α.	Balmer series			B.	Paschen se		-		
		C.	Pfund series			D.	Lymen seri	es			
	6)		eometry of a mo	olecule co	ntaining two b	ond pairs	-		nd the c	entral a	tom is:
	-,	Α.	Trigonal plana		Ü	В.	Triangular				
		C.	Angular			D.	Tetrahedra				
	7)		ding to Graham'	's law the	rates of diffu	sion of C		•		ratio.	
	' /	A.	$1:\sqrt{2}$	В.	2:1	C.	$\sqrt{2}:1$	D.	1:2	•	
	C \		•			0.	V 2 1	٠.	1.2		
	8)	A.	n gas is more ide $H_{ m 2}S$	B.	NH ₃	C.	H_2	D.	SO	!	
	9)	Which	n of the following	s posses	ses highest b	oiling poin	it?		•		
		A.	HCl	B.	H_2O	C.	H_2S	D.	HF	,	
	10)										
		A.	Dipole-dipole	forces		B.	London dis	spersion fo	rces		
		C.	Electrostatic t	forces		D.	Hydrogen	bonding			
	11) Which of the followings is NOT an anisotropic property?										
		A.	Refractive inc	iex		B.	Electrical o	conductivity	/		
		C.	Cleavage			D.	Viscosity				
	12)	CO_2	in solid state for	ms:							
		A.	Ionic crystal			B.	Molecular	crystals			
	,	C.	Liquid crystal	s		D.	Covalent o	rystals			
	13)	For th	ne reaction N_2O). D.						
	10,	A.	K = K (RT)	4 \) B	K = K(R)	$T)^2$ C.	$K_p = K_c(I)$	$(T)^{-2}$ D.	K_{-}	$=K_{c}$	
	14)								P	U	
	177)	•			B.	Increasing	the press	ure			
		C.	Decreasing t	-		D.	Increasing	•			
	15)		h of the following	•			,	-			
	.~,	A.	MgO	₽.	Cr_2O_3	C.	NO_2	D.	Na	-	
	16)	Wher	n concentration	of a react	ant is doubled	i, the rate	of reaction be	comes ha	f. The	order of	reaction
		roons	act to that embets	anco ie:							

C.

Emulsion

Sol

B.

В.

17)

· Gel

A colloid, containing a solid dispersed in a liquid is called:

1/2

Aerosol

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B, C and D: 68

NOTE: The Questions of sections B, C and D are to be answered on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 21)

(Chapters 1 to 6)

Q. 2 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) Define conversion factor. Write down the conversion factor for the preparation of NH_3 from 4 moles of N_2 , according to the following reaction. $N_2 + 3H_2 \rightarrow 2NH_3$
- (ii) Calculate the wave number of limiting line in Lymen series of hydrogen spectrum.
- (iii) Write down any three differences between sigma and pi bonds.
- (iv) Why is the energy of σ_{2px} orbital higher than that of π_{2py} & π_{2pz} orbitals in the molecular orbital diagram of N_2 ?
- (v) How will you derive absolute zero from Charle's law?
- (vi) 4 g of CH_4 at 27°C and 2.5 atm pressure occupies the volume of 2.46 dm^3 . Calculate the value of general gas constant R.
- (vii) What is vacuum distillation? Give its one application.
- (viii) Describe the role of hydrogen bonding in cleansing action of soap and solubility of some organic compounds in water. Give an example.
- (ix) Differentiate between hexagonal close packing and cubic close packing of atoms in the metals.
- (x) Write down the three differences between jonic and covalent solids.

SECTION - C (Marks 21) (Chapters 7 to 12)

Q. 3 Answer any SEVEN parts. All parts carry equal marks.

(7 x3 = 21)

(i) Describe the effect of increase in temperature on the value of K_c for the given reactions at equilibrium.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3 \quad \Delta H = -198 \text{ kj / mol}$$

 $N_2O_4 \rightleftharpoons 2NO_2 \quad \Delta H = +57.2 \text{ kj / mol}$

- (ii) When 60 g CH_3COOH and 46 g C_2H_5OH are heated, 12 g H_2O and 58.7 g $CH_3COOC_2H_5$ are formed at equilibrium. Calculate the value of K_c .
- (iii) Calculate the concentration of H^+ ions in a solution that contains $1 M HF(K_a = 7.2 \times 10^{-4})$
- (iv) Define Lewis acid and Lewis base. Give an example to show the significance of this concept.
- (v) Define initial rate. How is it determined? (data is not required)
- (vi) Describe the effect of increase in temperature on the solubility of gases in water.
- (vii) Compare any three properties of colloids, suspensions and true solutions.
- (viii) Differentiate between constant pressure and constant volume calorimetry.
- (ix) State Hess's law and give one example.
- (x) Balance the equation by ion-electron method. $Cr_2O_7^{-2} + Cl^{-1} \rightarrow Cr^{+3} + Cl_2$

SECTION - D (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks. (Question 4 from Chapters 1 to 6)

 $(13 \times 2 = 26)$

Q. 4 a. Differentiate between limiting and non-limiting reactant. How will you identify limiting reactant in a chemical reaction? Calculate the volume of NH_3 gas produced at STP when $200 \ g \ NH_4Cl$ is heated with $200 \ g \ Ca(OH)_2$ according to the following reaction. (2+2+3)

$$2 NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$$

(Atomic masses $N=14g \ / \ mol$, $Cl=35.5g \ / \ mol$, $Ca=40g \ / \ mol$, $O=16g \ / \ mol$, $H=1g \ / \ mol$)

b. Explain the structure of acetylene on the basis of hybridization of central atom. (06)

(Question 5 from Chapters 7 to 12)

- Q. 5 a. Explain collision theory of reaction rates with reference to activation energy, formation of activated complex and enthalpy changes in a chemical reaction. (3+3+2)
 - b. Derive an expression for the determination of relative lowering of vapour pressure and molecular mass of a substance from Raoult's Law.

(Question 6 Part (a) from Chapters 1 to 6 and Part (b) from Chapters 7 to 12)

- Q. 6 a. Derive an expression for total energy of election present in nth orbit of H-atom. (06)
 - b. What is a Fuel Cell? Describe the construction and working of Fuel Cell, giving the reactions taking place at cathode and at anode. What is the application of these cells? (1+3+2+1)

