BOARD OF INTERMEDIATE AND SECONDARY EDUCATION,MULTAN
OBJECTIVE KEY FOR SSC ANNUALS ${ }^{\prime}$ 攺 $\angle Y$ EXAMINATION,2019. Name of Subject: Math \& (Science Group) ${ }^{1 / 1}$ Session: \qquad

Group: 1st

Group: 2nd

Key
62019

Prepared \& Checked By:
Dated: 12-3-2019

SSC PART-II (10th CLASS) MATHEMATICS (SCIENCE GROUP) GROUP-I

TIME ALLOWED: 2.10 Hours
MAXIMUM MARKS: 60
NOTE: - Write same question number SUBJECTIVE
 and its part number on answer book, as given in the question paper.

SECTION-I حصاول

2. Attempt any six parts.

(i) Define Reciprocal Equation.
(ii) Write the equation in the standard form.
 (i) (

أَ
(iii) If α, β are the roots of the equation $\ell x^{2}+m x+n=0,(\ell \neq 0)$, then find the value of $\alpha^{3} \beta^{2}+\alpha^{2} \beta^{3}$
(iv) If α, β are the roots of the equation, $2 x^{2}-3 x-5=0$ from a quadratic equation having roots, $2 \alpha+1,2 \beta+1$
(v) Solve by using synthetic division if 2 is

the root of the equation $x^{3}-28 x+48=0$

$$
\begin{equation*}
\alpha^{2}, \beta^{2}-{ }^{\text {rn }} \tag{vi}
\end{equation*}
$$

(vi) If α, β are the roots of the equation $x^{2}+p x+q=0$, form an equation whose roots are α^{2}, β^{2}
(vii) Find a third proportional to $(x-y)^{2}, x^{3}-y^{3}$

$$
\begin{equation*}
(x-y)^{2}, x^{3}-y^{3}-{ }^{3} \tag{vii}
\end{equation*}
$$

(viii) If $V \propto R^{3}$ and $V=5$,
 when $R=3$ then find the value of K.
(ix) Define inverse Variation.

3. Attempt any six parts.

$12=2 \times 6$
(i) Define Rational Fraction.
(ii) If $A=\{0,2,4\}$ and

(iii) Find a and b if

(iv) Define a Function.
(v) If $X=\{1,4,7,9\}$ and
 $Y=\{2,4,5,9\}$ then find $X \cap Y$ and $X \cup Y$
(vi) Find the geometric mean of the observations $2,4,8$.
(vii) Define Standard Deviation.
(viii) Find arithmetic mean for the given data.
$12,14,17,20,24,29,35,45$
(vii)
(ix) Write the formulae to find median and mode from grouped data.

4. Attempt any six parts.

(i) Define Radian measure of an angle.
(ii) Find θ, when $r=2.5 \mathrm{~m}, \ell=4.5 \mathrm{~m}$
(iii) Define Obtuse Angle.
(iv) Define Chord of a Circle.
(v) Define length of a tangent to a circle.
(vi) Define segment of a circle.
(vii) Define Circumangle.
(viii) Define a Polygon.
(ix) Define Escribed Circle.

钅 (i)

-

- (v)
(Vi)
$-\frac{x_{0}}{\text { rr }}$
(viii)
-

SECTION -II

$$
24=8 \times 3
$$

NOTE: - Attempt any three questions but question No. 9 is compulsory.

5.(A) Solve the following equation using quadratic formula:-
 $6 x^{2}-3-7 x=0$
(B) Prove that $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\omega y+\omega^{2} z\right)\left(x+\omega^{2}+\omega z\right)$ (ب) (ب)

$$
\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{4}{3}
$$

 7.(A) If $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\}$
and $C=\{1,4,8\} \quad$ then prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(B) Find the Harmonic mean for the following data:-

- مندجز

8.(A) Prove that $\operatorname{Sin}^{3} \theta=\operatorname{Sin} \theta-\operatorname{Sin} \theta \operatorname{Cos}^{2} \theta$
$\operatorname{Sin}^{3} \theta=\operatorname{Sin} \theta-\operatorname{Sin} \theta \operatorname{Cos}^{2} \theta$ ك
(B) Inscribe a circle in a triangle $A B C$ with sides.
(ب) (ب)

$$
|A B|=5 \mathrm{~cm},|B C|=3 \mathrm{~cm},|C A|=3 \mathrm{~cm}
$$

 the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

OR !
Prove that any two angles in the same segment of
 a circle are equal.

TIME ALLOWED: 2.10 Hours MAXIMUM MARKS: 60
NOTE: - Write same question number SUBJECTIVE

, $2.10=$,

 and its part number on answer book, as given in the question paper.

SECTION -I

2. Attempt any six parts.
$12=2 \times 6$
(i) Write down the names of two methods for solving quadratic equation.
(ii) Solve by factorization. $x^{2}-x-20=0$
(iii) Evaluate. $\left(9+4 \omega+4 \omega^{2}\right)^{3}$

$$
\begin{align*}
& \text { - (i) } \tag{ii}
\end{align*}
$$

$$
\begin{align*}
& \left(9+4 \omega+4 \omega^{2}\right)^{3}-{ }^{3} \tag{iii}
\end{align*}
$$

 of equation $4 x^{2}-5 x+6=0$ then find the value of $\alpha^{2} \beta^{2}$
(v) Prove that the sum of the all cube roots of unity is zero.

(vi) Using synthetic division, find the remainder and quotient when

$$
\begin{equation*}
\left(x^{3}+3 x^{2}+2\right) \div(x-2) \tag{vi}
\end{equation*}
$$

(vii) Define Proportion.
(viii) Find the value of ' x ' if
$(3 x-2): 4::(2 x+3): 7$
'
(ix) Find the cost of 8 kg mangoes if 5 kg of mangoes cost Rs. 250 .
(ix)
3. Attempt any six parts.
(i) Define Proper Fraction.
(ii) If $X=\{1,4,7,9\}$ and
 $Y=\{2,4,5,9\}$ then find $X \cup Y$
(iii) If $A=\{a, b\}$ and $B=\{c, d\}$ then find $A \times B$
(iv) Define a subset and give one example.
(v) Write all the subsets of the set $\{a, b\}$
(vi) Define Standard Deviation.

-
(vii) Find Arithmetic Mean by direct method for the following data:-

بإرا احطز (vii) 12, 14, 17, 20, 24, 29, 35, 45
 11500, 12400, 15000, 14500, 14800
(ix) Define Mode.
عاركّتر يفـيمـ
(2)

4. Attempt any six parts.

(i) Define Angle of Depression.
(ii) Express angle 315° in to radians.
(iii) Define Acute angle.
(iv) What is meant by Collinear Points?
(v) Define Secant.
(vi) Define Arc of a Circle.
(vii) Differentiate between a Circle and a Circumference.
(viii) What is meant by Perimeter?
(ix) Define Circumscribed Circle.

(أيم) (vii)
!
(ix)

SECTION-II

$$
24=8 \times 3
$$

NOTE: - Attempt any three questions but question No .9 is compulsory.

(B) If α, β are the roots of the equation $x^{2}+p x+q=0$ then evaluate $\alpha^{2}+\beta^{2}$
6.(A) $m \propto \frac{1}{n^{3}}$ and $m=2$, when $n=4$, find m when $n=6$ and find n when $m=432$

7.(A) If $U=\{1,2,3,4, \cdots,-\cdots, 10\}, A=\{1,3,5,7,9\} \quad B-A=B \cap A^{\prime}$ aUS $\left\{\begin{array}{l}: H\end{array}\right.$ and $B=\{1,4,7,10\}$ then verify that $B-A=B \cap A^{\prime}$
(B) The following data relates to the ages of (ب) children in a school. Compute the mean age.

8.(A) Verify the identity.

$$
\frac{1+\operatorname{Cos} \theta}{\operatorname{Sin} \theta}+\frac{\operatorname{Sin} \theta}{1+\operatorname{Cos} \theta}=2 \operatorname{Cosec} \theta
$$

(B) Circumscribe a circle about an equilateral (ب) triangle $A B C$ with each side of length 4 cm .
9. Prove that if two chords of a circle are congruent then they will be equidistant from the centre.

PAPER CODE

SSC PART-II (10th CLASS)

MATHEMATICS (SCIENCE GROUP) GROUP-I

TIME ALLOWED: 20 Minutes OBJECTIVE

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice $-\mathcal{J}$ which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.

Q.No. 1

(1) The number of terms in a standard quadratic equation $a x^{2}+b x+c=0$ is:-
(A) 1
(B) 2
(C) 3
(D) 4
(2) If $b^{2}-4 a c<0$, then the roots of $a x^{2}+b x+c=0$ are:-
(A) Imaginary
(B) Rational نوط
(C) Irrational تونـون
(D) Natural numbers تردنآعدا
(3) If α, β إر are the roots of $x^{2}-x-1=0$, then product of the roots 2α and 2β is:-
(A) -2
(B) -4
(C) 4
(D) 2
(4) If $a: b=x: y$ then alternando property is:-

尾
(A) $\frac{a-b}{x}=\frac{x-y}{y}$
(B) $\frac{a}{b}=\frac{x}{y}$
(C) $\frac{a}{x}=\frac{b}{y}$
(D) $\frac{a+b}{b}=\frac{x+y}{y}$
(5) In a proportion $a: b:: c: d, a$ and d are called:-
(A) Means ${ }^{6}$,
(B) Extremes קثيّن
(C) Third proportional
(D) Fourth proportional
(6) The identity
$(5 x+4)^{2}=25 x^{2}+40 x+16$ is tare for:-
(A) One value of x ك x
(C) Two values of $x \quad \underset{\sim}{\perp} x$
(B) All values of $x \quad<$ ك ك x
(D) Three values of x ك ك ك x
(7) If $A \subseteq B$, then $A-B$ is equal to:-

(A) B
(B) A
(C) ϕ
(D) $B-A$
($\quad(A \cup B) \cup C$
(8) $(A \cup B) \cup C$ is equal to:-
(B) $(A \cup B) \cap C$
(C) $A \cap(B \cap C)$
(D) $A \cup(B \cup C)$
(9) The most frequent occurring observation in a data set is called:-

ك كمواوبی-
(A) Mode 06
(B) Median
(C) Harmonic mean in in inch
(D) Mean
(10) If $\tan \theta=\sqrt{3}$, then θ is equal to:-
(A) 90°
(B) 30°
(C) 45°
(D) 60°
$\theta=$ \qquad
(11) $\sec ^{2} \theta=$
(B) $1+\cos ^{2} \theta$
(C) $1+\tan ^{2} \theta$
(A) $1-\sin ^{2} \theta$
(D) $1-\tan ^{2} \theta$
(12) Line segment joining any point of the circle to the centre is called:-

(A) Circumference كيط
(B) Diameter $\quad \mathrm{p}$
(C) Perimeter bbl
(D) Radial segment
(13) A line which has only one point in common with a circle is called:- ايكْط.
(A) Sine of a circle sine $6 \ll$ ing
(B) Secant of a circle
secant 6
(C) Cosine of a circle Cosine 6
(D) Tangent of a circle Tangent 6
(14) A pair of chords of a circle subtending two -E UK \qquad
 congruent central angles is:-
(A) Congruent تمتال
(B) Incongruent تيرتمثا
(C) Over lapping تراكب
(D) Parallel $\mathrm{J} / \mathrm{j} / \mathrm{F}$
(15) The measure of the external angle of a regular octagon is:-

(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{8}$

PAPER CODE NUMBER: 3193

2019 (A)
 SSC PART-II (10th CLASS)

MATHEMATICS (SCIENCE GROUP) GROUP-I

TIME ALLOWED: 20 Minutes OBJECTIVE حمدرْنى
MAXIMUM MARKS: 15
Gl ,
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.

Q.No. 1

(1) If $a: b=x: y$ then alternando property is:-
(A) $\frac{a-b}{x}=\frac{x-y}{y}$
(B) $\frac{a}{b}=\frac{x}{y}$
(C) $\frac{a}{x}=\frac{b}{y}$
(D) $\frac{a+b}{b}=\frac{x+y}{y}$
(2) In a proportion $a: b:: c: d, \quad a$ and d
 are called:-
(A) Means
(B) Extremes طرْنِ

(D) Fourth proportional كر
(3) The identity
$(5 x+4)^{2}=25 x^{2}+40 x+16$ is ture for:-
(A) One value of x ك ك ك x
(B) All values of x
人 ك ك ك
(C) Two values of x
ك ك ك ك ك
(D) Three values of x ك ك ك x
(4) If $A \subseteq B$, then $A-B$ is equal to:-

(A) B
(B) A
(C) ϕ
(D) $B-A$
(5) $(A \cup B) \cup C$ is equal to:-
-
(B) $(A \cup B) \cap C$
(C) $A \cap(B \cap C)$
(A) $A \cap(B \cup C)$
(D) $A \cup(B \cup C)$
(6) The most frequent occurring observation in a data set is called:-

(A) Mode, 6
(B) Median
(C) Harmonic mean in inti ch
(D) Mean
(7) If $\tan \theta=\sqrt{3}$, then θ is equal to:-
(A) 90°
(B) 30°
(C) 45°
(D) 60°
(8) $\sec ^{2} \theta=$ $\theta=$ \qquad gr $\tan \theta=\sqrt{3}$
$\sec ^{2} \theta=$
(B) $1+\cos ^{2} \theta$
(C) $1+\tan ^{2} \theta$
(A) $1-\sin ^{2} \theta$
(D) $1-\tan ^{2} \theta$
(9) Line segment joining any point of the circle to the centre is called:-
,
(A) Circumference كيط
(B) Diameter ${ }^{\circ}$
(C) Perimeter bbl
(D) Radial segment راكتطام
(10) A line which has only one point in common with a circle is called:- ايكخط:
(A) Sine of a circle sine $6<_$, 1 ,
(B) Secant of a circle
secant 6 6
(C) Cosine of a circle Cosine $6<$ \& 1 ,
(D) Tangent of a circle Tangent $6<$ 復,
(11) A pair of chords of a circle subtending two - K ur \qquad
 congruent central angles is:-
(A) Congruent تمتال

(C) Over lapping
(D) Parallel
(12) The measure of the external angle of a regular octagon is:-

(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{8}$
(13) The number of terms in a

standard quadratic equation $a x^{2}+b x+c=0$ is:-
(A) 1
(B) 2
(C) 3
(D) 4
(14) If $b^{2}-4 a c<0$

$$
\begin{equation*}
\text { - } a x^{2}+b x+c=0 \text { < } \tag{14}
\end{equation*}
$$

then the roots of $a x^{2}+b x+c=0$ are:-

(B) Rational Ht

(D) Natural numbers ترشرة،
(15) If α, β
 are the roots of $x^{2}-x-1=0$, then product of the roots 2α and 2β is:-
(A) -2
(B) -4
(C) 4
(D) 2
$30(\mathrm{Obj})(\hat{z} \hat{\sim})-2019(\mathrm{~A})-58000$ (MULTAN)

PAPER CODE

 NUMBER： 3195
2019 （A） SSC PART－II（10th CLASS）

MATHEMATICS（SCIENCE GROUP）GROUP－I
TIME ALLOWED： 20 Minutes

OBJECTIVE حمّثرون

MAXIMUM MARKS： 15

Note：You have four choices for each objective type question as A，B，C and D．The choice which you think is correct，fill that bubble in front of that question number．On bubble sheet，use marker or pen to fill the bubbles．Cutting or filling two or more bubbles will result in zero mark in that question．Attempt as many questions as given in objective type question paper and leave others blank．No credit will be awarded in case bubbles are not filled．Do not solve questions on this sheet of ObJECTIVE PAPER．

Q．No． 1

（1）Line segment joining any point of the circle to the centre is called：－
（A）Circumference كيط
（B）Diameter $\quad ;$
（C）Perimeter bbl
（D）Radial segment رנاكتط
（2）A line which has only one point in common with a circle is called：－ايكنط•
（A）Sine of a circle sine 6_{C} ， 1
（B）Secant of a circle
secant 6
（C）Cosine of a circle Cosine Kん 保，
（D）Tangent of a circle Tangent $6<$ 得，
（3）A pair of chords of a circle subtending two －EUr \qquad
 congruent central angles is：－
（A）Congruent
（B）Incongruent غيّتمثاثل
（C）Over lapping
（D）Parallel
（4）The measure of the external angle of a regular octagon is：－

（A）$\frac{\pi}{4}$
（B）$\frac{\pi}{6}$
（C）$\frac{\pi}{3}$
（D）$\frac{\pi}{8}$
（5）The number of terms in a
وبور．مامعاريكاوات
standard quadratic equation $a x^{2}+b x+c=0$ is：－
（A） 1
（B） 2
（C） 3
（D） 4
（6）If $b^{2}-4 a c<0$
ا
then the roots of $a x^{2}+b x+c=0$ are：－
（A）Imaginary
（B）Rational
（C）Irrational تُ

（7）If α, β竞 are the roots of $x^{2}-x-1=0$ ，then product of the roots 2α and 2β is：－
（A）-2
（B）-4
（C） 4
（D） 2
（8）If $a: b=x: y$ then alternando property is：－
共
（A）$\frac{a-b}{x}=\frac{x-y}{y}$
（B）$\frac{a}{b}=\frac{x}{y}$
（C）$\frac{a}{x}=\frac{b}{y}$
（D）$\frac{a+b}{b}=\frac{x+y}{y}$
（9）In a proportion $a: b:: c: d, a$ and d are called：－
（A）Means ${ }^{\text {，}}$ ，
（B）Extremes קزين
（C）Third proportional（D）Fourth proportional （5x＋4）$)^{2}=25 x^{2}+40 x+16$ كرّث
（10）The identity
$(5 x+4)^{2}=25 x^{2}+40 x+16$ is tare for：－
（A）One value of x كابكي x
（B）All values of $x \quad \therefore \quad \perp$ ك x
（C）Two values of x
」

（11）If $A \subseteq B$ ，then $A-B$ is equal to：－
－
（A）B
（B）A
（C）ϕ
（D）$B-A$
（12）$(A \cup B) \cup C$ is equal to：－
（B）$(A \cup B) \cap C$
（C）$A \cap(B \cap C)$

- －
（A）$A \cap(B \cup C)$
（13）The most frequent occurring observation in a data set is called：－
（D）$A \cup(B \cup C)$

（A）Mode o ls
（B）Median
（C）Harmonic mean
（D）Mean
（14）If $\tan \theta=\sqrt{3}$ ，then θ is equal to：－
$\theta=$ \qquad $\pi_{r} \quad \tan \theta=\sqrt{3}$ ，
（A） 90°
（B） 30°
（C） 45°
（D） 60°
（15） $\sec ^{2} \theta=$
（A） $1-\sin ^{2} \theta$
（B） $1+\cos ^{2} \theta$
（C） $1+\tan ^{2} \theta$
（D） $1-\tan ^{2} \theta$

PAPER CODE NUMBER: 3197

SSC PART-II (10th CLASS)

MATHEMATICS (SCIENCE GROUP) GROUP-I

TIME ALLOWED: 20 Minutes OBJECTIVE

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.

Q.No. 1

(1) A pair of chords of a circle subtending two \qquad congruent central angles is:-
(A) Congruent
(B) Incongruent يزتمتا
(C) Over lapping تماكاكه (D) Parallel
2) The measure of the external angle of a regular octagon is:-
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{8}$
(3) The number of terms in a
standard quadratic equation $a x^{2}+b x+c=0$ is:-
(A) 1
(B) 2
(C) 3
(D) 4
(4) If $b^{2}-4 a c<0$
-
$a x^{2}+b x+c=0$,
then the roots of $a x^{2}+b x+c=0$ are:-

(B) Rational
(C) Irrational تيز
(D) Natural numbers ترزناعهار
(5) If α, β
 are the roots of $x^{2}-x-1=0$, then product of the roots 2α and 2β is:-
(A) -2
(B) -4
(C) 4
(D) 2
(6) If $a: b=x: y$ then alternando property is:-
-
(A) $\frac{a-b}{x}=\frac{x-y}{y}$
(B) $\frac{a}{b}=\frac{x}{y}$
(C) $\frac{a}{x}=\frac{b}{y}$
(D) $\frac{a+b}{b}=\frac{x+y}{y}$

- تاعب
(7) In a proportion $a: b:: c: d, \quad a$ and d are called:-
(A) Means
(B) Extremes קفيّن
 مكا
(8) The identity
$(5 x+4)^{2}=25 x^{2}+40 x+16$ is ture for:-
(A) One value of x
ك x
(C) Two values of x
ك ك ك ك
(B) All values of x

ك ك ك ك
(D) Three values of x ك ك x

(A) B
(B) A
(C) ϕ
(D) $B-A$
(10) $\quad(A \cup B) \cup C$ is equal to:-
(A) $A \cap(B \cup C)$
(B) $(A \cup B) \cap C$
(C) $A \cap(B \cap C)$

(A) Mode 0,6
(B) Median

(D) Mean
(12) If $\tan \theta=\sqrt{3}$, then θ is equal to:-
(A) 90°
(B) 30°
(C) 45°
(D) 60°
$\theta=$ \qquad
(13) $\sec ^{2} \theta=$
(B) $1+\cos ^{2} \theta$
(C) $1+\tan ^{2} \theta$
(A) $1-\sin ^{2} \theta$
(D) $1-\tan ^{2} \theta$
(14) Line segment joining any point of the circle to the centre is called:,
(A) Circumference
(B) Diameter \quad B
(C) Perimeter \quad bll
(D) Radial segment رأقتطحم

(A) Sine of a circle sine $6 \lll 1$,
(B) Secant of a circle
secant $6 \lll 1$ 解
(C) Cosine of a circle Cosine 6
(D) Tangent of a circle Tangent $6 \lll 1$,

PAPER CODE 2019 (A)

SSC PART -II (10th CLASS)

NUMBER: 3192

MATHEMATICS (SCIENCE GROUP) GROUP-II

TIME ALLOWED: 20 Minutes
MAXIMUM MARKS: 15
 ,
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.
(1) An equation, which remains unchanged when x is replaced by $1 / x$ is called a/an:OBJECTIVE

 d

Q.No. 1

(B) Reciprocal equation
(C) Radical equation
(D) Quadratic equation
(2) Product of cube roots of a unity is:-
(A) 0
(B) -1
(C) 1
(D) 3
(3) $\frac{1}{\alpha}+\frac{1}{\beta}=$ \qquad
(A) $\frac{1}{\alpha}$
(B) $\frac{1}{\alpha}-\frac{1}{\beta}$
(C) $\frac{\alpha-\beta}{\alpha \beta}$

$$
\begin{equation*}
-\frac{1}{\alpha}+\frac{1}{\beta} \tag{2}
\end{equation*}
$$

(4) If $a: b=x: y$ then alternando property is:-

$$
\begin{aligned}
& \text { (A) Exponential equation تُ: }
\end{aligned}
$$

)
(A) $\frac{a}{x}=\frac{b}{y}$
(B) $\frac{a}{b}=\frac{x}{y}$
(C) $\frac{a+b}{b}=\frac{x+y}{y}$
(D) $\frac{\alpha+\beta}{\alpha \beta}$

屎
(5) If $a: b=x: y$, then invertendo property is:-
(D) $\frac{a-b}{x}=\frac{x-y}{y}$
(A) $\frac{a}{x}=\frac{b}{y}$
(B) $\frac{a}{a-b}=\frac{x}{x-y}$
(C) $\frac{a+b}{b}=\frac{x+y}{y}$
(D) $\frac{b}{a}=\frac{y}{x}$

- $a: b=x: y$
(6) Partial fraction of $\frac{x-2}{(x-1)(x+2)}$ are of the form:-

تمكّونّ
(A) $\frac{A}{x-1}+\frac{B}{x+2}$
(B) $\frac{A x}{x-1}+\frac{B}{x+2}$
(C) $\frac{A}{x-1}+\frac{B x+C}{x+2}$
(D) $\frac{A x+B}{x-1}+\frac{C}{x+2}$
(7) Point $(-1,4)$ lies in the quadrant.
-
(A) I (B) III
(C) II
(D) IV
 is 3 and in set B is 2 , then number of binary relations in $A \times B$ is:-
(A) 2^{3}
(B) 2^{8}
(C) 2^{6}
(D) 2^{2}
(9) Mean is affected by change in:-

Ff \qquad

(A) Value
(B) Ratio نبت
(C) Origin
(D) Proportion
(10) The union of two non collinear rays, which have common - tull \qquad
 end point is called:-
(A) An angle \approx
(B) A degree (C) A minute \therefore (D) A radian
(11) $\sec ^{2} \theta=$ \qquad $\sec ^{2} \theta=$ \qquad
(B) $1+\tan ^{2} \theta$
(C) $1+\cos ^{2} \theta$
(A) $1-\overline{\sin ^{2} \theta}$
(D) $1-\tan ^{2} \theta$ -4 Lur \qquad
(12) Locus of point in a plane equidistant from a
(B) Circle
(C) Circumference (D) Diameter B
(13) A line which has only one point in common with a circle is called:- اكينط•
(A) Sine of a circle Sine 6< 6
(B) Cosine of a circle Cosine 6
(C) Tangent of a circle Tangent $6<$ 人
(D) Secant of a circle Secant 6
$\begin{array}{lll}\text { (14) A pair of chords of a circle substending two congruent } \\ \text { central angles is:- } & \text { (A) Congruent } & \text { (B) Incongruent }\end{array}$ \qquad ,

(15) The length of the diameter of a circle is how many times the radius of the circle?

(C) Three times (D) Four times
$32(\mathrm{Obj})(\hat{w})-2019(\mathrm{~A})-36000$ (MULTAN)

PAPER CODE

NUMBER： 3192

MATHEMATICS（SCIENCE GROUP）GROUP－II

TIME ALLOWED： 20 Minutes

OBJECTIVE

MAXIMUM MARKS： 15

$$
\text { , } 20=ت
$$

 which you think is correct，fill that bubble in front of that question number．On bubble sheet，use marker or pen to fill the bubbles．Cutting or filling two or more bubbles will result in zero mark in that question．Attempt as many questions as given in objective type question paper and leave others blank．No credit will be awarded in case BUBBLES are not filled．Do not solve questions on this sheet of OBJECTIVE PAPER．

Q．No． 1

（1）An equation，which remains unchanged when x is replaced by $1 / x$ is called alan：－
（2）Product of cube roots of a unity is：－
（A） 0
（B）-1 $\begin{array}{ll}\text {（A）} \frac{1}{\alpha} & \text {（B）} \frac{1}{\alpha} \\ \text { alternando property is：－}\end{array}$ $\begin{array}{ll}\text {（A）} \frac{1}{\alpha} & \text {（B）} \frac{1}{\alpha}-\frac{1}{\beta} \\ \text { alternando property is：－}\end{array}$
（C）$\frac{\alpha-\beta}{\alpha \beta}$
－1

（C）Radical equation
ai بنـاوات
（D）Quadratic equation －
（3）$\frac{1}{\alpha}+\frac{1}{\beta}=$ \qquad （C） 1
（D） 3
Note：You have four choices for a
（C）$\frac{a+b}{b}=\frac{x+y}{y}$
（D）$\frac{a-b}{x}=\frac{x-y}{y}$
－
（5）If $a: b=x: y$ ，then invertendo property is：－
（A）$\frac{a}{x}=\frac{b}{y}$
（B）$\frac{a}{a-b}=\frac{x}{x-y}$
（C）$\frac{a+b}{b}=\frac{x+y}{y}$
（D）$\frac{b}{a}=\frac{y}{x}$
（6）Partial fraction of $\frac{x-2}{(x-1)(x+2)}$ are of the form：－
－ \qquad $505 \frac{x-2}{(x-1)(x+2)}$
（A）$\frac{A}{x-1}+\frac{B}{x+2}$
（B）$\frac{A x}{x-1}+\frac{B}{x+2}$
（C）$\frac{A}{x-1}+\frac{B x+C}{x+2}$
（D）$\frac{A x+B}{x-1}+\frac{C}{x+2}$

$$
\begin{equation*}
-<\frac{1}{\alpha}+\frac{1}{\beta} \tag{2}
\end{equation*}
$$

（4）If $a: b=x: y$ then alternando property is：－
（B）$\frac{a}{b}=\frac{x}{y}$
（A）$\frac{a}{x}=\frac{b}{y}$
quadrant．
（7）Point $(-1,4)$ lies in the quadrant．
$\begin{array}{ll}\text {（A）I } & \text {（B）III }\end{array}$
（7）Point $(-1,4)$ lies in the quadrant．
$\begin{array}{ll}\text {（A）I } & \text {（B）III }\end{array}$
（C）II
（D） IV
-
 is 3 and in set B is 2 ，then number of binary relations in $A \times B$ is：－
（A） 2^{3}
（B） 2^{8}
（C） 2^{6}
（D） 2^{2}
（9）Mean is affected by change in：－
（A）Value
（B）Ratio
（C）Origin
－胡新 \qquad ح ح
（10）The union of two non collinear rays，which have common
－ 4 tr \qquad － end point is called．－
（A）An angle and（B）A degree
．

（11） $\sec ^{2} \theta=$
\qquad
（B） $1+\tan ^{2} \theta$
（C） $1+\cos ^{2} \theta$
（D） $1-\tan ^{2} \theta$
（12）Locus of point in a plane equidistant from a - CHIN \qquad －
（A） $1-\overline{\sin ^{2} \theta}$
（A）Radius U＇ر ls
$\begin{array}{lll}\text {（B）Circle } & \prime \prime \prime & \text {（C）Circumference }\end{array}$ fixed point is called：－
（D）Diameter， 3

（A）Sine of a circle
Sine 6 6
（B）Cosine of a circle
Cosine 6＜
（C）Tangent of a circle
Tangent 6
（D）Secant of a circle
Secant $k_{<}$加，
（14）A pair of chords of a circle substending two congruent－Es： \qquad
 central angles is：－（A）Congruent
$\begin{array}{ll}\text {（B）Incongruent }{ }^{\text {U }} \text {（C）Over lapping } & \text {（C）}\end{array}$
（D）Parallel Stor
（15）The length of the diameter of a circle is how many times the
 radius of the circle？
（A）One time（B）Two times（SNO
（C）Three times
（D）Four times

MATHEMATICS（SCIENCE GROUP）GROUP－II

TIME ALLOWED： 20 Minutes

OBJECTIVE

MAXIMUM MARKS： 15

居
Note：You have four choices for each objective type question as A，B，C and D．The choice
which you think is correct，fill that bubble in front of the which you think is correct，fill that bubble in front of that question number．On bubble sheet，use marker or pen to fill the bubbles．Cutting or filling two or more bubbles will result in zero mark in that question．Attempt as in case BUBBLES are no in objective type question paper and leave others blank．No credit will be awarded Q．No． 1 BUBLES are not filled．Do not solve questions on this sheet of OBJECTIVE PAPER．
Q．No． 1
（1）Point $(-1,4)$ lies in the quadrant．
（A）I
（B）III

－（ $-1,4$ ） is 3 and in set B is 2 ，then number of binary relations in $A \times B$ is：－
（A） 2^{3}
（B） 2^{8}
（C） 2^{6}
（D） 2^{2}
（3）Mean is affected by change in：－
（A）Value ${ }^{3}$
（B）Ratio
（C）Origin
 \qquad Vt
（4）The union of two non collinear rays，which have common the rs \qquad （D）Proportion $ب$－ end point is called：－
（A）An angle jag
（B）A degree
（C）A minute－
，
（5） $\sec ^{2} \theta=$ \qquad
（B） $1+\tan ^{2} \theta$
（C） $1+\cos ^{2} \theta$
（D）A radian $\sec ^{2} \theta=$ \qquad
（6）Locus of point in a plane equidistant from a fixed point is called：－
（A）Radius vile
（B）Circle $-4 \mathrm{CHK}$ \qquad （D） $1-\tan ^{2} \theta$

（D）Dine
（7）A line which has only one point in common with a circle is called：－

（A）Sine of a circle Sine $6 \ll 1$ ，
（C）Tangent of a circle
Tangent $K_{<}$得，
（B）Cosine of a circle

Cosine Kく列
（D）Secant of a circle Secant $6<$＜
（8）A pair of chords of a circle substending two congruent Ext \qquad
 central angles is：－
（A）Congruent متمال
（B）Incongruent
（C）Over lapping（D）Parallel
！
（9）The length of the diameter of a circle is how many times the radius of the circle？（A）One time
（B）Two times
$\begin{array}{ll}\text {（C）Three times } & \text {（D）Four times }\end{array}$

（10）An equation，which remains unchanged when x is replaced by $1 / x$ is called alan：－
（C）Radical equation
（D）Quadratic equation
（D） 3
（A）$\frac{1}{\alpha}$
（B）-1
（C） 1
（12）$\frac{1}{\alpha}+\frac{1}{\beta}=$
（A）$\frac{1}{\alpha}$
（B）$\frac{1}{\alpha}-\frac{1}{\beta}$
（C）$\frac{\alpha-\beta}{\alpha \beta}$
（D）$\frac{\alpha+\beta}{\alpha \beta} \quad-$ ب $\frac{1}{\alpha}+\frac{1}{\beta}$
（13）If $a: b=x: y$ then alternando property is：－
（A）$\frac{a}{x}=\frac{b}{y}$
（B）$\frac{a}{b}=\frac{x}{y}$
（C）$\frac{a+b}{b}=\frac{x+y}{y}$
－
（D）$\frac{a-b}{x}=\frac{x-y}{y}$
（14）If $a: b=x ; y$ ，then invertendo property is：－
（A）$\frac{a}{x}=\frac{b}{y}$
（B）$\frac{a}{a-b}=\frac{x}{x-y}$
（C）$\frac{a+b}{b}=\frac{x+y}{y}$
（D）$\frac{b}{a}=\frac{y}{x}$
（15）Partial fraction of $\frac{x-2^{a-b} \quad x-y}{(x-1)(x+2)}$ are of the form：－
$-\frac{x}{a}-5 \cdot \frac{x-2}{(x-1)(x+2)}$
－
（A）$\frac{A}{x-1}+\frac{B}{x+2}$
（B）$\frac{A x}{x-1}+\frac{B}{x+2}$
（C）$\frac{A}{x-1}+\frac{B x+C}{x+2}$
（D）$\frac{A x+B}{x-1}+\frac{C}{x+2}$

PAPER CODE

NUMBER: 3196

MATHEMATICS (SCIENCE GROUP) GROUP-II

TIME ALLOWED: 20 Minutes

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice - which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.
Q. No. 1
(1) If $a: b=x: y$ then alternando property is:-

(A) $\frac{a}{x}=\frac{b}{y}$
(B) $\frac{a}{b}=\frac{x}{y}$
(C) $\frac{a+b}{b}=\frac{x+y}{y}$
(D) $\frac{a-b}{x}=\frac{x-y}{y}$
-
(2) If $a: b=x: y$, then invertendo property is:-
(A) $\frac{a}{x}=\frac{b}{y}$
(B) $\frac{a}{a-b}=\frac{x}{x-y}$
(C) $\frac{a+b}{b}=\frac{x+y}{y}$
(D) $\frac{b}{a}=\frac{y}{x}$
(3) Partial fraction of $\frac{x-2}{(x-1)(x+2)}$ are of the form:- \qquad ,55\% $5 \frac{x-2}{(x-1)(x+2)}$
(A) $\frac{A}{x-1}+\frac{B}{x+2}$
(B) $\frac{A x}{x-1}+\frac{B}{x+2}$
(C) $\frac{A}{x-1}+\frac{B x+C}{x+2}$
(D) $\frac{A x+B}{x-1}+\frac{C}{x+2}$
(4) Point $(-1,4)$ lies in the quadrant.
نتط
(A) 1
(B) III
(C) II
(D) IV
(5) If number of elements in set A — is 3 and in set B is 2 , then number of binary relations in $A \times B$ is:-
(A) 2^{3}
(B) 2^{8}
(C) 2^{6}
(D) 2^{2}
(6) Mean is affected by change in:-
(A) Value
(B) Ratio نبت
(C) Origin EMit
-
(7) The union of two non collinear rays, which have common
-4 the \qquad (D) Proportion - Gb
end point is called:-
(A) An angle

(B) degree
(C) A minute :-
(D) A radian
(8) $\sec ^{2} \theta=$ \qquad
$\begin{array}{ll}\text { (C) } 1+\cos ^{2} \theta & \text { (D) } 1-\tan ^{2} \theta\end{array}$
(A) $1-\overline{\sin ^{2} \theta}$
(B) $1+\tan ^{2} \theta$
(9) Locus of point in a plane equidistant from a - chur \qquad -
fixed point is called:-
(A) Radius vb,
(B) Circle oil (C) Circumference (D) Diameter
(10) A line which has only one point in common with a circle is called:- اكي.
(A) Sine of a circle Sine b_{c}, 1 ,
(B) Cosine of a circle Cosine k_{C} 解
(C) Tangent of a circle Tangent 6
(D) Secant of a circle Secant $6 \ll$ 多,
(11) A pair of chords of a circle substending two congruent - n \qquad

central angles is:-
(A) Congruent
(B) Incongruent
(C) Over lapping
(D) Parallel
(12) The length of the diameter of a circle is how many times the

radius of the circle?
(A) One time
(B) Two times (C) Three times (D) Four times
,
(13) An equation, which remains unchanged when x is replaced by $1 / x$ is called alan:-
(A) Exponential equation تؤثنُ
(B) Reciprocal equation mb
(C) Radical equation
(D) Quadratic equation
(14) Product of cube roots of a unity is:-
(A) 0
(B) -1
(C) 1
(D) 3

$$
\begin{equation*}
-\frac{1}{\alpha}+\frac{1}{\beta} \tag{14}
\end{equation*}
$$

(15) $\frac{1}{\alpha}+\frac{1}{\beta}=$ \qquad
(B) $\frac{1}{\alpha}-\frac{1}{\beta}$
(C) $\frac{\alpha-\beta}{\alpha \beta}$
(D) $\frac{\alpha+\beta}{\alpha \beta}$

PAPER CODE

Number： 3198

MATHEMATICS（SCIENCE GROUP）GROUP－II

ا OBJECTIVE \qquad

4 $20=$

MAXIMUM MARKS： 15

Note：You have four choices for each objective type question as A，B，C and D．The choice－ which you think is correct，fill that bubble in front of that question number．On bubble sheet，use marker or pen to fill the bubbles．Cutting or filling two or more bubbles will result in zero mark in that question．Attempt as many questions as given in objective type question paper and lea eve others blank．No credit will be awarded in case BUBBLES are not filled．Do not solve questions on this sheet of OBJECTIVE PAPER．

Q．No． 1

（1）A pair of chords of a circle substending two congruent－ \qquad ，1－1＂ central angles is：－
（A）Congruent تماثما
（B）Incongruent V^{2}
（C）Over lapping
（2）The length of the diameter of a circle is how many times the اكِ
radius of the circle？
（A）One time اكيك
 \therefore ：
（3）An equation，which remains unchanged when x is replaced by $1 / x$ is called alan：－
（A）Exponential equation
（B）Reciprocal equation
（C）Radical equation جذر
（D）Quadratic equation
综
（4）Product of cube roots of a unity is：－
（A） 0
（B）-1
（C） 1
（D） 3
$-4<\frac{1}{\alpha}+\frac{1}{\beta}$
（A）$\frac{1}{\alpha}$
（B）$\frac{1}{\alpha}-\frac{1}{\beta}$
（C）$\frac{\alpha-\beta}{\alpha \beta}$
（D）$\frac{\alpha+\beta}{\alpha \beta}$
－$a: b=x: y$
（A）$\frac{a}{x}=\frac{b}{y}$
（B）$\frac{a}{b}=\frac{x}{y}$
（C）$\frac{a+b}{b}=\frac{x+y}{y}$
（D）$\frac{a-b}{x}=\frac{x-y}{y}$
－
（A）$\frac{a}{x}=\frac{b}{y}$
（B）$\frac{a}{a-b}=\frac{x}{x-y}$
（C）$\frac{a+b}{b}=\frac{x+y}{y}$
（D）$\frac{b}{a}=\frac{y}{x}$
（8）Partial fraction of $\frac{x-2}{(x-1)(x+2)}$ are of the form：－

$$
\begin{equation*}
-\sin \int_{0}^{2}-\frac{x-2}{(x-1)(x+2)} \tag{8}
\end{equation*}
$$

（A）$\frac{A}{x-1}+\frac{B}{x+2}$
（B）$\frac{A x}{x-1}+\frac{B}{x+2}$
（C）$\frac{A}{x-1}+\frac{B x+C}{x+2}$
（D）$\frac{A x+B}{x-1}+\frac{C}{x+2}$
（9）Point $(-1,4)$ lies in the quadrant．
－in the
（A）I
（B）III
（C）II
（D）IV

is 3 and in set B is 2 ，then number of binary relations in $A \times B$ is：－
（A） 2^{3}
（B） 2^{8}
（C） 2^{6}
（D） 2^{2}
（11）Mean is affected by change in：－
 \qquad

（A）Value \because
（B）Ratio
（C）Origin
（D）Proportion－
（12）The union of two non collinear rays，which have common \qquad り害
end point is called：－
（A）An angle زادي
（B）A degree $5 \sqrt{5}$
（C）A minute－-
（D）A radian $\sec ^{2} \theta=$ \qquad
（13） $\sec ^{2} \theta=$ \qquad （B） $1+\tan ^{2} \theta$
（C） $1+\cos ^{2} \theta$
（D） $1-\tan ^{2} \theta$
（14）Locus of point in a plane equidistant from a \qquad －
fixed point is called：－
（A）Radius $v^{\prime}(\mathrm{s}$
（B）Circle is，（C）Circumference
（D）Diameter

（A）Sine of a circle
Sine 长
（B）Cosine of a circle
（D）Secant of a circle Secant $6<\rightarrow$
Cosine 6
（C）Tangent of a circle Tangent 6

