BOARD OF INTERMEDIATE AND SECONDARY EDUCATION,MULTAN OBJECTIVE KEY FOR SSC ANNUALISTíp Name of Subject:Guphath Session: \qquad
Group: 1st
Group: 2nd

Q.	Papor Code	Paper Code	Paper Codo	Papar Code
Nos	3261	3263	3265	3267
1	C	A	D	A
2	B	D	A.	C
3	A	B	C	B
4	D	C	B^{\prime}	D
5	A	B	B	A
6	C	A	A	C.
7	B	D	D	B
8	D	A	B	B
9	A	C	C	A.
10	C	B	B	D
11	B	D	A	B
12	B	A	D	C
13	A	C	A	B
14	D	B	C	A
15	B	B	B	D
16			,	\checkmark
17				
18				
19				
20				

Q.		Pparcoso	Ppore Cose	Pepar cado	Papar Coso
Nos		3262	3264	3266	3268.
1		- B	A	C	A
2		D	C	A	A
3		B	D	A	B
4		A	C	C	A
5		A	c	B	C
6		B	C	D	D
7		A	A	B	C
8		C	A	A	C
9		D	C	A	C
10		C	B	B	A
11		C	D	A	A
2		C	B	C	C
13		A	A	D	B
14		A	A	C	D
15		C	B	C	B
16					-
17				7	
18			,		
19		\square			
20					

620190 —

Prepared \& Chpcked By:
Dated:12-03-2019

S.\#	Name	Designation	Institution	Mobile No	Signaturg
1	Mohomwad Risi Qasi	SHM	GHSDOROte	$\begin{aligned} & 0301- \\ & 6533367 \end{aligned}$	
2	Minheruy Nawlaz	Pisincipal	G/w. Sis Ayyigiphad	$\begin{aligned} & 0933- \\ & 6105660 . \end{aligned}$	$a \cdot / \mathrm{a}_{2}, \mathrm{al}$
3	M.Abu Bahar	SST(se)	Govt. Sskaria 4/s Danlat Gat	$\begin{aligned} & 0302 \\ & 7358706 \end{aligned}$	$\underset{\sim}{2}$
4	Muhamened Khan	SST $\left(S_{e}\right)$	Gort. Compremensir 9\%1.5.5. nerltan.	$\begin{aligned} & 0333-610 \\ & 4096 \end{aligned}$	Were
5					
Re-Checked By - \%					
1	alli Rega siddigus	SST (SCi)	Gort. Compretensive HSS MLT	$\begin{aligned} & 1345 \\ & 7263346 \end{aligned}$	CKRase
2	Ghulam. Shabbi	SST (Sc)	Gort comprehandro Hss multan	$\begin{gathered} 1263270 \\ 0302-7377 \\ 176 \end{gathered}$	glx

SSC PART－II（10th CLASS）

GENERAL MATHEMATICS GROUP－I

SUBJECTIVE
会展 2.10 ＝

لوْ－ and its part number on answer book，as given in the question paper．

SECTION－I

2．Attempt any six parts．
（i）Define Surd．

توالْ

$(a b-1 / a b)^{3}-v j^{0}$

（iv）
$x^{3}+y-x y-x-40 \%$
$c^{2}+6 b c+9 b^{2}-16 x^{2}-$ ．
6 qr，15qrs \quad（vii）
 －
$12=2 \times 6$
بوالْ

$$
\begin{equation*}
\frac{10 x-1}{2 x+5}=3 \quad 0 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
x+3<7-50 \tag{iii}
\end{equation*}
$$

－（iv）

$$
x^{2}-6 x+5=0-x_{1} \text { (v) }
$$

$$
\begin{equation*}
3 x^{2}-8 x-3=0-4 \text { بريمر } \tag{vi}
\end{equation*}
$$

（ix）Add matrix A and matrix B

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 3 \\
-2 & 5
\end{array}\right] \quad \text { اورنا } A \text { الب } A \text { (ix) }
$$

4．Attempt any six parts．

（i）What is meant by Straight Angle？
（ii）Two angles are supplementary and
（2） the greater angle exceeds the smaller by 30° ．How many degrees are there in each angle？
（iii）What is meant by Parallel Lines？
（iv）Draw a circle with centre 0 and radius 5 cm ．
（v）Define Altitude of a Triangle．
（vi）What is meant by Pythagoras Theorem？
To 浣
（vii）Find the third side c（hypotenuse）of right triangle when its two sides are $a=3$ and $b=4$
（viii）Find the distance between the points
$(2,1),(-4,3)$
（viii）
（ix）Define Collinear Points．

SECTION－II

NOTE：－Attempt any three questions．

5．（A）If $x=\sqrt{5}+2$ then find $x+\frac{1}{x}$ and $x^{2}+\frac{1}{x^{2}} \quad$（ا（ا） 5
（B）Factorize $x^{9}+y^{9}$

$$
\text { (ب) ك ك ك } x^{9}+y^{9}
$$

6．（A）Find H．C．F．by Factorization．$x^{2}+3 x+2, x^{2}+4 x+3, x^{2}+5 x+4 \quad$ 6
（B）Solve．$x-\left[2 x-\frac{3 x-4}{7}\right]=\frac{4 x-27}{3}-3 \quad x-\left[2 x-\frac{3 x-4}{7}\right]=\frac{4 x-27}{3}-3-50$（ب）
7．（A）Solve by using quadratic formula．

$$
(x-1)(x+3)-12=0
$$

（B）Construct a square whose each side is 5 cm ．

（B）Use Cramer＇s rule to solve simultaneous equations． －

$$
x+3 y=1, \quad 2 x+8 y=0
$$

9．（A）Find the area of the Washer whose
 external and internal diameters are 15 cm and 13 cm ．
（B）Show that points $A(2,4), B(6,2)$ and $C(4,3)$ are collinear．

GENERAL MATHEMATICS GROUP-I

TIME ALLOWED: 20 Minutes

OBJECTIVE

gr $20=$ ت

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . The choice -us which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case Bubbles are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER. Q. No. 1
(1) $\sqrt[3]{4}=4^{\frac{1}{3}}$ is a surd of order.
(A) 0
(B) 1
(C) 3
C.
(D) $\frac{1}{3}$
(2) $(a+b)^{2}-(a-b)^{2}=$?
(A) $2\left(a^{2}+b^{2}\right)$
(B) $4 a b$
(C) $-4 a b$

$$
\begin{equation*}
(a+b)^{2}-(a-b)^{2}=? \tag{2}
\end{equation*}
$$

(3) Factorization of $x^{2}+x y$ is:-
(A) $x(x+y)$
(B) $x(x-y)$
(C) $x^{2}+y$
(D) $a^{2}+b^{2}$

$$
\begin{equation*}
\text { ك } x^{2}+x y \tag{3}
\end{equation*}
$$

(4) A cubic polynomial is of degree:-
(D) $x+y$
(A) 0
(B) 1
(C) 2
(5) H.C.F. Of $12 p q, 8 p^{2} q$ is:-
(A) $4 p q$
(B) $4 p^{2} q^{2}$
(C) $4 p q^{2}$
(D) 3
ب
(6) For each number ' x ' the absolute value of ' x ' is denoted by:-
(A) x
(B) $-x$
(C) $|x|$
(7) The solution set of $|x|=9$ is:-
(A) $\{ \pm 3\}$
(B) $\{ \pm 9\}$
(C) $\{3,9\}$
(D) $4 p^{2} q$
(8) The number of techniques to solve a quadratic equation is:-
A,
(D) 0

- $\}$
(D) $\{-3,-9\}$
(A) 4
(B) 1
(C) 2
(9) The solution set of $(x-2)^{2}=4$ is:-
(D) 3
- EHf\% $(x-2)^{2}=4$
(A) $\{0,4\}$
(B) $\{-6,2\}$
(C) $\{-6,-2\}$
(D) $\{2,6\}$
(10) Order of Matrix $\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$ is:-
6الب
(A) 1×1
(B) 3×3
(C) 1×3
(D) 3×1
(11) If $A^{t}=-A$ then A is called:-
(A) Symmetric V_{6}
(B) Skew symmetric ئرتشاك
(C) Transpose
(D) Square Matrix
(12) The sum of the angles of a triangle is:ث大ث كخا
(A) 90°
(B) 180°
(C) 270°
(D) 360°
(13) The Medians of a triangle are:-
-

(B) Collinear biff
(14) Volume of a cube with edge " ℓ " is:-
(C) Non Concurrent
(A) ℓ^{4}
(B) 3ℓ
(C) ℓ^{2}
-n " ℓ
(15) Points which do not lie on the same straight line are called:-
(A) Collinear bf:
(B) Non-collinear bis
(C) Equal كا

PAPER CODE NUMBER: 3263

GENERAL MATHEMATICS GROUP-I

TIME ALLOWED: 20 Minutes

OBJECTIVE

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.

Q. No. 1

(1) The Medians of a triangle are:-
(A) Concurrent
(B) Collinear b; ${ }^{\text {a }}$
(2) Volume of a cube with edge " ℓ " is:-
(A) ℓ^{4}
(B) 3ℓ
(C) ℓ^{2}
(3) Points which do not lie on the same straight line are called:-
(A) Collinear bi f
(B) Non-collinear bicicher
(C) Equal ك
(4) $\sqrt[3]{4}=4^{\frac{1}{3}}$ is a surd of order.
(A) 0
(B) 1
(C) 3
(5) $(a+b)^{2}-(a-b)^{2}=$?
(C) Non Concurrent 4

(D) ℓ^{3}

(D) Zero io 1
$-\sqrt[3]{4}=4^{\frac{1}{3}}$ Fut)
(D) $\frac{1}{3}$
$(a+b)^{2}-(a-b)^{2}=$?
(A) $2\left(a^{2}+b^{2}\right)$
(B) $4 a b$
(C) $-4 a b$
(D) $a^{2}+b^{2}$
ك.
(6) Factorization of $x^{2}+x y$ is:-
(C) $x^{2}+y$
(D) $x+y$
(A) $x(x+y)$
(B) $x(x-y)$

اكي
(7) A cubic polynomial is of degree:-
(A) 0
(B) 1
(C) 2
(8) H.C.F. of $12 p q, 8 p^{2} q$ is.-
(A) $4 p q$
(B) $4 p^{2} q^{2}$
(C) $4 p q^{2}$
(9) For each number ' x ' the absolute value of ' x ' is denoted by:-
(A) x
(B) $-x$
(C) $|x|$
(10) The solution set of $|x|=9$ is:-
(A) $\{ \pm 3\}$
(B) $\{ \pm 9\}$
(C) $\{3,9\}$
(11) The number of techniques to solve a quadratic equation is:-
(A) 4
(B) 1
(C) 2
(12) The solution set of $(x-2)^{2}=4$ is:-
(D) 3

(D) $4 p^{2} q$

居
(D) 0

$$
\begin{equation*}
-\uparrow \approx \mathcal{H}\}|x|=9 \tag{9}
\end{equation*}
$$

(D) $\{-3,-9\}$
(D) 3

- CHug $(x-2)^{2}=4$
(A) $\{0,4\}$
(B) $\{-6,2\}$
(C) $\{-6,-2\}$
(13) Order of Matrix $\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$ is:-
(A) 1×1
(B) 3×3
(C) 1×3
(14) If $A^{l}=-A$ then A is called:-
(D) $\{2,6\}$

$$
\text { تالب }] \text { 6 }
$$

(D) 3×1
(A) Symmetric
(B) Skew symmetric
(C) Transpose

(15) The sum of the angles of a triangle is:-
(D) Square Matrix 1 Tow, - Ct
(A) 90°
(B) 180°
(C) 270°
(D) 360°
$34(O \mathrm{bj})(\hat{\approx} \hat{\sim})-2019(\mathrm{~A})-6000$ (MULTAN)

PAPER CODE NuMBER: 3265

GENERAL MATHEMATICS GROUP-I

TIME ALLOWED: 20 Minutes

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and lea we others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.
Q. No. 1
(1) The number of techniques to solve a quadratic equation is:-

(A) 4
(B) 1
(C) 2
(2) The solution set of $(x-2)^{2}=4$ is:-
(D) 3
-
(A) $\{0,4\}$
(B) $\{-6,2\}$
(C) $\{-6,-2\}$
(D) $\{2,6\}$

$$
\begin{equation*}
\text { كالب } 6 \tag{2}
\end{equation*}
$$

(A) 1×1
(B) 3×3
(C) 1×3

$$
\begin{equation*}
\text { (D) } 3 \times 1 \tag{3}
\end{equation*}
$$

(4) If $A^{t}=-A$ then A is called:-
(A) Symmetric تشا
(B) Skew symmetric ${ }^{5}$
(C) Transpose
(D) Square Matrix

- CHIS A in $A^{t}=-A$ 质 ث
(5) The sum of the angles of a triangle is:-
(C) 270°
(D) 360°

(6) The Medians of a triangle are:-
(A) Concurrent
(B) Collinear bs β^{3}
(7) Volume of a cube with edge " ℓ " is:-

(A) ℓ^{4}
(B) 3ℓ
(C) ℓ^{2}

(8) Points which do not lie on the same straight line are called:-
(A) Collinear bs ρ^{i}
(B) Non-collinear b> pis.
(C) Equal (
(9) $\sqrt[3]{4}=4^{\frac{1}{3}}$ is a surd of order.
(A) 0
(B) 1
(C) 3
(10) $(a+b)^{2}-(a-b)^{2}=$?
(A) $2\left(a^{2}+b^{2}\right)$
(B) $4 a b$
(C) $-4 a b$
(11) Factorization of $x^{2}+x y$ is:-
(A) $x(x+y)$
(B) $x(x-y)$
(C) $x^{2}+y$
(12) A cubic polynomial is of degree:-
(A) 0
(B) 1
(C) 2
(13) H.C.F. of $12 p q, 8 p^{2} q$ is:-
(A) $4 p q$
(B) $4 p^{2} q^{2}$
(C) $4 p q^{2}$
(14) For each number ' x ' the absolute value of ' x ' is denoted by:-
(A) x
(B) $-x$
(C) $|x|$
(15) The solution set of $|x|=9$ is:-
(C) $\{3,9\}$
(D) ℓ^{3}

$$
\begin{align*}
& \text { (D) Zero io } \tag{8}\\
& \text { (1) } \sqrt[3]{4}=4^{\frac{1}{3}} \text { pulse }
\end{align*}
$$

(D) $\frac{1}{3}$

$$
\begin{equation*}
(a+b)^{2}-(a-b)^{2}=? \tag{10}
\end{equation*}
$$

(D) $a^{2}+b^{2}$
-
(D) $x+y$

أيسر.
(D) 3

- $-\mathrm{P}^{5} \mathrm{t}$ 比 $12 p q, 8 p^{2} q$
(D) $4 p^{2} q$

Rx
(D) 0

$$
\begin{array}{ll}
\text { (A) }\{ \pm 3\} & \text { (B) }\{ \pm 9\} \tag{15}
\end{array}
$$

$$
\begin{equation*}
-\epsilon_{6}^{3} y_{6} 6|x|=9 \tag{14}
\end{equation*}
$$

PAPER CODE

GENERAL MATHEMATICS GROUP－I

TIME ALLOWED： 20 Minutes

OBJECTIVE

MAXIMUM MARKS： 15

 F
Note：You have four choices for each objective type question as $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ．The choice -S which you think is correct，fill that bubble in front of that question number．On bubble sheet，use marker or pen to fill the bubbles．Cutting or filling two or more bubbles will result in zero mark in that question．Attempt as many questions as given in objective type question paper and leave others blank．No credit will be awarded in case BUBBLES are not filled．Do not solve questions on this sheet of OBJECTIVE PAPER，

Q．No． 1

（1）H．C．F．of $12 p q, 8 p^{2} q$ is：－

$$
\begin{aligned}
& \text { - - }
\end{aligned}
$$

$$
\begin{align*}
& \text { (D) } 4 p^{2} q \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { (D) } 0 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { (D) }\{-3,-9\} \tag{3}\\
& \text { - } \tag{4}\\
& \text { (D) } 3 \\
& \text {-cendr }(x-2)^{2}=4 \tag{5}\\
& \text { (D) }\{2,6\} \\
& \text { 6ا } \tag{6}
\end{align*}
$$

（A） $4 p q$
（B） $4 p^{2} q^{2}$
（C） $4 p q^{2}$
（2）For each number＇x＇the absolute value of＇x＇is denoted by：－
（A）x
（B）$-x$
（C）$|x|$
（3）The solution set of $|x|=9$ is：－
（A）$\{ \pm 3\}$
（B）$\{ \pm 9\}$
（C）$\{3,9\}$
（4）The number of techniques to solve a quadratic equation is：－
（A） 4
（B） 1
（C） 2
（5）The solution set of $(x-2)^{2}=4$ is：－
（B）$\{-6,2\}$
（C）$\{-6,-2\}$
（A）$\{0,4\}$
（6）Order of Matrix $\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$ is：－
（A） 1×1
（B） 3×3
（C） 1×3
（7）If $A^{t}=-A$ then A is called：－
（A）Symmetric \mathcal{K}_{6}
（B）Skew symmetric $ل$ 身
（C）Transpose

$$
\begin{equation*}
\text { (D) } 3 \times 1 \tag{7}
\end{equation*}
$$

（8）The sum of the angles of a triangle is：－
（D）Square Matrix ثلث＜
（A） 90°
（B） 180°
（C） 270°
（D） 360°

（9）The Medians of a triangle are：－
（A）Concurrent
（B）Collinear bp
（C）Non Concurrent
（10）Volume of a cube with edge＂ℓ＂is：－
（A）ℓ^{4}
（B） 3ℓ
（C）ℓ^{2}
－
（11）Points which do not lie on the same straight line are called：－
（A）Collinear bi f：
（B）Non－collinear bi pi\％
（C）Equal Ú⿰㇒⿻土一⿱⿴囗十丌 －الي
（12）$\sqrt[3]{4}=4^{\frac{1}{3}}$ is a surd of order．
（A） 0
（B） 1
（C） 3

> (D) Zero $\%$ 立
> $-\frac{1}{4}=4^{\frac{1}{3}}$ Plus
（D）$\frac{1}{3}$

$$
\begin{equation*}
(a+b)^{2}-(a-b)^{2}=? \tag{13}
\end{equation*}
$$

（D）$a^{2}+b^{2}$

$$
\begin{equation*}
\text { - } 6 \% x^{2}+x y \tag{14}
\end{equation*}
$$

（D）$x+y$
اكي
（15）A cubic polynomial is of degree：－
（D） 3

GENERAL MATHEMATICS GROUP-II

TIME ALLOWED: 2.10 Hours
MAXIMUM MARKS: 60
NOTE: - Write same question number

$$
\text { gr } 2.10 \text { ت }
$$

$$
60=\text { ك }
$$

زُ and its part number on answer book, as given in the question paper. SECTION-I حصر اول
2. Attempt any six parts.
(i) Simplify.
(ii) Simplify. $(\sqrt{3}-2)(5-\sqrt{5})$
(iii) Define Real Numbers.
$12=2 \times 6$
$(\ell+m)(\ell-m)\left(\ell^{2}+m^{2}\right)\left(\ell^{4}+m^{4}\right)$
$(\sqrt{3}-2)(5-\sqrt{5})-{ }^{5}$

(iv) Factorize. $x^{2}-x-156$
(v) Factorize. $2 a^{2}-b c-2 a b+a c$
(vi) Define Cubic Polynomial.
(vii) Find H.C.F. by factorization. $4 a b c^{3}, 8 a^{3} b c$
(viii) Define L.C.M.
.
(ix) Find L.C.M. by factorization. $8 p^{2} q r^{3}, 4 p^{2} q^{3} r$
$8 p^{2} q r^{3}, 4 p^{2} q^{3} r-$ 管
3. Attempt any six parts.
(i) Define Linear Equation.
(ii) Solve. $|3 x+4|=9$
(iii) Solve. $3(x+5)>2(x+2)+8$
(iv) Write the names of methods to solve quadratic equation.
(v) Solve by factorization. $5 x=x^{2}+6$
(vi) Solve. $2 x+4=\frac{7}{x}-1$
(vii) Define Rectangular Matrix.

$$
\begin{equation*}
12=2 \times 6 \tag{ix}
\end{equation*}
$$

$4 a b c^{3}, 8 a^{3} b c-$ C 6% \%

$$
\begin{equation*}
2 a^{2}-b c-2 a b+a c-2< \tag{v}
\end{equation*}
$$

- سرد.جا

$$
\begin{equation*}
4 a b c^{3}, 8 a^{3} b c \text { c } \tag{vii}
\end{equation*}
$$

- بالْمُ2 (i)
(2)

4. Attempt any six parts.

$12=2 \times 6$
(i) Define an Obtuse Angle,
(ii) Write the equation for the given triangle and find the value of x

(iii) Define Congruent figures.

(iv) Define the orthocenter of the triangle.
(v) Draw an equilateral triangle with length of each side 6 cm .
(vi) Define a Cube.

(vi)
(vii) The sides of a right triangle are 5 cm (vii) and 12 cm . Find the hypotenuse.
(viii) Define a Line Segment.
(ix) Describe the location of $(8,-3)$ on the number plane.

SECTION-||

NOTE: - Attempt any three questions. $24=8 \times 3$
5.(A) Prove that $\left[z+\frac{1}{z}\right]^{2}-\left[z-\frac{1}{z}\right]^{2}=4$
(B) Factorize. $z^{4}-z^{2}+16$

$$
\begin{aligned}
& z^{4}-z^{2}+16-v_{0}^{2} 60 \dot{\rho} \% \text { (ч) }
\end{aligned}
$$

6.(A) Find the H.C.F. by division method. $4 x^{3}+2 x^{2}-6 x, 4 x^{3}-8 x+4 \quad$ 6 6

7.(A) Find two consecutive positive odd numbers such that the sum of their squares is 74 .
(B) Construct a square whose one side is 5 cm .

$$
A=\left[\begin{array}{ll}
4 & 2 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{rr}
2 & 1 \\
-2 & 4
\end{array}\right], C=\left[\begin{array}{rr}
-1 & 2 \\
4 & 2
\end{array}\right] \text {, } A(B+C)=A B+A C \quad \text { 若 }
$$

8.(A) Verify that $A(B+C)=A B+A C$ where $A=\left[\begin{array}{ll}4 & 2 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{rr}2 & 1 \\ -2 & 4\end{array}\right], C=\left[\begin{array}{rr}-1 & 2 \\ 4 & 2\end{array}\right]$
(B) Solve by matrix inversion method. $\quad 3 x+2 y=10,2 y-3 x=-4 \quad$ -
9.(A) Find the area of triangle if Base $=8 \mathrm{~cm}$,

2 Altitude $=15 \mathrm{~cm}$
(B) Show that the points $A(2,4), B(6,2)$ and $C(4,3)$ are collinear.

PAPER CODE

GENERAL MATHEMATICS GROUP－II

TIME ALLOWED： 20 Minutes

OBJECTIVE

MAXIMUM MARKS： 15

 Note：You have four choices for each objective type question as A，B，C and D．The choice－u which you think is correct，fill that bubble in front of that question number．On bubble sheet，use marker or pen to fill the bubbles．Cutting or filling two or more bubbles will result in zero mark in that question．Attempt as many questions as given in objective type question paper and leave others blank．No credit will be awarded in case BUBBLES are not filled．Do not solve questions on this sheet of OBJECTIVE PAPER．
（1）$(a+b)^{2}-(a-b)^{2}=$ ？
（A） $2\left(a^{2}+b^{2}\right)$
（B） $4 a b$
（C）$-4 a b$
$(a+b)^{2}-(a-b)^{2}=$ ？
（2）$a^{3}-3 a b(a-b)-b^{3}=$ ？
（A）$a^{3}+b^{3}$
（B）$(a+b)^{3}$
（C）$a^{3}-b^{3}$
（D）$a^{2}+b^{2}$
$a^{3}-3 a b(a-b)-b^{3}=$ ？
（3）A linear polynomial is of degree：－
（A） 0
（B） 1
（C） 2
共
（D）$(a-b)^{3}$
（4）If a polynomial $P(x)$ of degree $n \geq 1$ is divided by polynomial＇$x-a$＇where a is any constant，then $P(a)$ is：－
（A）Remainder 0 ：
（B）Zero $\%$
（C） 1
（D）a
$-\uparrow \int^{5}$ 轮 $12 p q, 8 p^{2} q$
（5）H．C．F of $12 p q, 8 p^{2} q$ is：－
（A） $4 p q$
（6）The symbol \geq stands for：－
（A）Greater than cite
（C）Less than or equal to $<$
B） $4 p^{2} q^{2}$
（C） $4 p q^{2}$
（D） $4 p^{2} q$
定

（D）Equal to $ب$＜
（7）Solution of $|x-1|=4$ is：－

$$
\begin{equation*}
-\epsilon_{4}^{4} 6|x-1|=4 \tag{7}
\end{equation*}
$$

（A）$\{5,-3\}$
（B）$\{-5,-3\}$
（C）$\{-5,3\}$
（D）$\{5,3\}$

$$
\begin{equation*}
-5 \operatorname{cog}_{6}^{2}-5 x+6=0 \tag{8}
\end{equation*}
$$

（8）Solution of $x^{2}-5 x+6=0$ is：－
（A）$\{3\}$
（B）$\{2\}$
（C）$\{2,3\}$
（D）$\{-2,-3\}$
（9）Solution of $x^{2}-9=0$ is：－
（A）$\{9\}$
（B）$\{ \pm 9\}$
（C）$\{3\}$

（10）In a unit matrix diagonal elements are：－
（A） 3
（B） 2
（C） 1
（11）In a square matrix the number of rows and columns are：－
（A） 2×3
（B） 3×2
（C）Same كـا

（12）Two angles with common vertex and a common side are called：－
（A）Vertical angles اكزالواري，
الحِ

（13）The angle bisectors of a triangle are：－
－U隹
（A）Concurrent اكينتط
（B）Collinear $b_{p}{ }^{i}$
（C）Perpendicular آْبُ
（D）Non－concurrent
（14）Area of semi－circle is：－
（A）$\frac{\pi r^{2}}{2}$
（B）πr^{2}
（C）$\pi^{2} r$
（D） $2 \pi r$
（15）Point on the axis do not lie in any：－多
（A）Plane
（B）Line bs
（C）Quadrant है，
（D）Circle oils

PAPER CODE

GENERAL MATHEMATICS GROUP-\|

TIME ALLOWED: 20 Minutes

OBJECTIVE

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice $-u^{-1}$ which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.

Q.No. 1

(1) Solution of $|x-1|=4$ is:-

$$
\begin{equation*}
-\left\{\sim \int^{\circ} 6|x-1|=4\right. \tag{1}
\end{equation*}
$$

(A) $\{5,-3\}$
(B) $\{-5,-3\}$
(C) $\{-5,3\}$
(D) $\{5,3\}$
(2) Solution of $x^{2}-5 x+6=0$ is:-
(A) $\{3\}$
(B) $\{2\}$
(C) $\{2,3\}$
(3) Solution of $x^{2}-9=0$ is:-
(A) $\{9\}$
(B) $\{ \pm 9\}$
(C) $\{3\}$

- $456 x^{2}-5 x+6=0$
(D) $\{-2,-3\}$
$-{ }^{2}{ }^{2}{ }^{9} 96 x^{2}-9=0$
(4) In a unit matrix diagonal elements are:-
(A) 3
(B) 2
(C) 1
(5) In a square matrix the number of rows and columns are:-
(D) 0
(A) 2×3
(B) 3×2
(C) Same UK

(6) Two angles with common vertex and a common side
are called:-
(A) Vertical angles
راكزاداي
(B) Supplementary angles
(C) Adjacent angles ثمرازار
(D) Complementary angles
(7) The angle bisectors of a triangle are:-
-

(B) Collinear bifa

(D) Non-concurrent
(8) Area of semi-circle is:-
(A) $\frac{\pi r^{2}}{2}$
(B) πr^{2}
(C) $\pi^{2} r$
(D) $2 \pi r$
(9) Point on the axis do not lie in any:-
(A) Plane
(B) Line b;
(C) Quadrant of
(D) Circle oís

$$
\begin{align*}
& (a+b)^{2}-(a-b)^{2}=\text { ? } \tag{10}\\
& \text { (D) } a^{2}+b^{2}
\end{align*}
$$

(10) $(a+b)^{2}-(a-b)^{2}=$?
(B) $4 a b$
(C) $-4 a b$
$a^{3}-3 a b(a-b)-b^{3}=$?
(11) $a^{3}-3 a b(a-b)-b^{3}=$?
(A) $a^{3}+b^{3}$
(B) $(a+b)^{3}$
(C) $a^{3}-b^{3}$
(D) $(a-b)^{3}$

(12) A linear polynomial is of degree:-
(B) 1
(C) 2
(D) 3
(13) If a polynomial $P(x)$ of degree $n \geq 1$ is divided by polynomial ' $x-a$ ' where a is any constant, then $P(a)$ is:-
(A) Remainder
(B) Zero
(C) 1
(D) a
(14) H.C.F of $12 p q, 8 p^{2} q$ is:-
$\begin{array}{ll}\text { (B) } 4 p^{2} q^{2} & \text { (C) } 4 p q^{2}\end{array}$
(A) $4 p q$

(15) The symbol \geq stands for:-

(D) Equal to $ب \leqslant$ 全

PAPER CODE

GENERAL MATHEMATICS GROUP-II

TIME ALLOWED: 20 Minutes OBJECTIVE

MAXIMUM MARKS: 15

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.
Q.No. 1
الي,
(1) Two angles with common vertex and a common side
are called:-
(A) Vertical angles
(D) Complementary angles <n 1 ,
(D) Complementary angles
(2) The angle bisectors of a triangle are:-
(C) Adjacent angles 2
(A) Concurrent
(B) Collinear bifa
(C) Perpendicular
(D) Non-concurrent
(3) Area of semi-circle is:-
(A) $\frac{\pi r^{2}}{2}$
(B) πr^{2}
(C) $\pi^{2} r$
(D) $2 \pi r$
(4) Point on the axis do not lie in any:-

(A) Plane
(B) Line b
(C) Quadrant © 0 ,
(5) $(a+b)^{2}-(a-b)^{2}=$?
(D) Circle ón

$$
\begin{equation*}
(a+b)^{2}-(a-b)^{2}=? \tag{4}
\end{equation*}
$$

(A) $2\left(a^{2}+b^{2}\right)$
(B) $4 a b$
(C) $-4 a b$
(D) $a^{2}+b^{2}$
$a^{3}-3 a b(a-b)-b^{3}=$?
(6) $a^{3}-3 a b(a-b)-b^{3}=$?
(B) $(a+b)^{3}$
(C) $a^{3}-b^{3}$
(D) $(a-b)^{3}$

يمدر.
(7) A linear polynomial is of degree:-
(A) 0
(B) 1
(C) 2
(D) 3
(8) If a polynomial $P(x)$ of degree $n \geq 1$ is divided by polynomial ' $x-a$ ' where a is any constant, then $P(a)$ is:-
(A) Remainder
(B) Zero $\%$
(C) 1
(D) a
(9) H.C.F of $12 p q, 8 p^{2} q$ is:-
(B) $4 p^{2} q^{2}$
(C) $4 p q^{2}$

(A) $4 p q$
(D) $4 p^{2} q$
(10) The symbol \geq stands for:-
(A) Greater than $<{ }^{1 \%} \%$
(B) Greater than or equal to $<$ Klit:
(C) Less than or equal to $ب \underset{\sim}{4}$
(D) Equal to $<\ldots 1 \%$,
(11) Solution of $|x-1|=4$ is:-

$$
\begin{equation*}
-<_{6}^{4} 6|x-1|=4 \tag{11}
\end{equation*}
$$

(A) $\{5,-3\}$
(B) $\{-5,-3\}$
(C) $\{-5,3\}$
(12) Solution of $x^{2}-5 x+6=0$ is:-
(A) $\{3\}$
(B) $\{2\}$
(C) $\{2,3\}$
(13) Solution of $x^{2}-9=0$ is:-
(A) $\{9\}$
(B) $\{ \pm 9\}$
(C) $\{3\}$
(14) In a unit matrix diagonal elements are:-

$$
\begin{equation*}
\text { (D) }\{5,3\} \tag{12}
\end{equation*}
$$

$-4 \pm \cos ^{6} 6 x^{2}-5 x+6=0$
(D) $\{-2,-3\}$
$-<+46 x^{2}-9=0$
(D) $\{ \pm 3\}$

(A) 3
(B) 2
(C) 1
(15) In a square matrix the number of rows and columns are:-
(D) 0 ربّ
(A) 2×3
(B) 3×2
(C) Same ULS
(D) 2×1

GENERAL MATHEMATICS GROUP-II

TIME ALLOWED: 20 Minutes

OBJECTIVE

$\because 20=$ gr

MAXIMUM MARKS: 15
$15=3$

Note: You have four choices for each objective type question as A, B, C and D. The choice -1 which you think is correct, fill that bubble in front of that question number. On bubble sheet, use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve questions on this sheet of OBJECTIVE PAPER.

Q. No. 1

(1) If a polynomial $P(x)$ of degree $n \geq 1$ is divided by polynomial ' $x-a$ ' where a is any constant, then $P(a)$ is:-
(A) Remainder 3 !
(B) Zero $\%$
(C) 1
(D) a
(2) H.C.F of $12 p q, 8 p^{2} q$ is.-
(B) $4 p^{2} q^{2}$
(C) $4 p q^{2}$

- $¢$ 个
(A) $4 p q$
(D) $4 p^{2} q$
(3) The symbol \geq stands for:-
(A) Greater than $<1 \%$ c

(C) Less than or equal to <4
(D) Equal to ب 4 庄

$$
\begin{equation*}
-C_{1} \mathcal{P} \gamma|x-1|=4 \tag{4}
\end{equation*}
$$

(4) Solution of $|x-1|=4$ is:-
(D) $\{5,3\}$
(5) Solution of $x^{2}-5 x+6=0$ is:-
(A) $\{3\}$
(B) $\{2\}$
(C) $\{-5,3\}$

$$
\begin{equation*}
-\frac{4}{4} \operatorname{H}^{6} 6 x^{2}-5 x+6=0 \tag{5}
\end{equation*}
$$

(6) Solution of $x^{2}-9=0$ is:-

$$
\text { (C) }\{2,3\}
$$

(D) $\{-2,-3\}$

$$
\begin{equation*}
\epsilon_{1}=y^{0} 6 x^{2}-9=0 \tag{6}
\end{equation*}
$$

(A) $\{9\}$
(B) $\{ \pm 9\}$
(C) $\{3\}$
(D) $\{ \pm 3\}$
(7) In a unit matrix diagonal elements are:-
(A) 3
(B) 2
(C) 1
(8) In a square matrix the number of rows and columns are:-
(C) Same ur
(D) 2×1 , \%:
(A) 2×3
(B) 3×2

(9) Two angles with common vertex and a common side are called:- (A) Vertical angles \approx
(B) Supplementary angles ~ 410
(C) Adjacent angles ~مّ
(D) Complementary angles كهم
(10) The angle bisectors of a triangle are:-

(A) Concurrent اكئتطا
(B) Collinear bi fa

(D) Non-concurrent
(11) Area of semicircle is:-

Va
(A) $\frac{\pi r^{2}}{2}$
(B) πr^{2}
(C) $\pi^{2} r$
(D) $2 \pi r$

(12) Point on the axis do not lie in any:-
D) Circle s iss
(A) Plane (B) Line b
(13) $(a+b)^{2}-(a-b)^{2}=$?
(C) Quadrant ${ }^{0}$ J
$(a+b)^{2}-(a-b)^{2}=$?
(A) $2\left(a^{2}+b^{2}\right)$
(B) $4 a b$
(C) $-4 a b$
(D) $a^{2}+b^{2}$
(14) $a^{3}-3 a b(a-b)-b^{3}=$?
(A) $a^{3}+b^{3}$
(B) $(a+b)^{3}$
(C) $a^{3}-b^{3}$
(15) A linear polynomial is of degree:-

$$
\begin{equation*}
a^{3}-3 a b(a-b)-b^{3}=? \tag{13}
\end{equation*}
$$

(D) $(a-b)^{3}$

(A) 0
(B) 1
(C) 2
(D) 3

