MODEL PAPER MATHEMATICS (ENGLISH)

Q. 1	The number of right angle(s) in the given triangle is: A. 0 B. 1 C. 2 D. 3	Q. 2	The cost of two pencils and three copies is Rs. 40. If $\mathbf{x}=$ cost of a pencil and $\mathbf{y}=$ cost of a copy, then which of the following algebraic equations will represent the given sentence? A. $2 x+3 y=40$ B. $2 x-3 y=40$ C. $\frac{x}{2}+\frac{y}{2}=40$ D. $\frac{2 x}{3 y}=40$
Q. 3	Which of the following is a set of even numbers? A. $\{0,1,2,3,4 \ldots\}$ B. $\{1,2,3,4,5 \ldots\}$ C. $\{1,3,5,7,9 \ldots\}$ D. $\{0,2,4,6,8 \ldots\}$	Q. 4	The number of digits in the square root of 15129 will be A. 2 B. 3 C. 4 D. 5
Q. 5	The number of variables in $7 x y z^{2}+y-x$, is: A. 1 B. 2 C. 3 D. 4	Q. 6	In a cone, if $r=1 \mathrm{~cm}$ and $\mathrm{h}=1 \mathrm{~cm}$, then its volume will be A. $\frac{\pi}{2} \mathrm{~cm}^{3}$ B. $2 \pi \mathrm{~cm}^{3}$ C. $3 \pi \mathrm{~cm}^{3}$ D. $\frac{\pi}{3} \mathrm{~cm}^{3}$
Q. 7	All of the following are non-terminating and repeating values EXCEPT: A. 1.414213 ... B.0.123123 ... C. 1.66666 ... D. 2.11111 ...	Q. 8	Consider the given figure. Which of the following pairs of angles is equal? A. $\angle p$ and $\angle l$ B. $\angle p$ and $\angle m$ C. $\angle p$ and $\angle r$ D. \angle pand $\angle q$
Q. 9	The digits in base 5 system are A. $0,1,2,3,4,5$ B. $0,1,2,3,4$ C. $1,23,4$ D. $1,2,3,4,5$	Q. 10	The number of times a value appears in a data is called A. frequency. B. class interval. C. class boundary. D. range.

Paper F2

Q. 11	In the figure given below, $\angle 2$ and $\angle 6$ are A. vertically opposite angles. B. alternate angles. C. interior angles of the same sides of $\overleftrightarrow{M N}$. D. corresponding angles.	Q. 12	For a given parallelogram CDEF, which of the following is true? A. $\overline{F C} \cong \overline{F E}$ B. $\overline{F C} \cong \overline{C D}$ C. $\overline{F C} \cong \overline{F D}$ D. $\overline{F C} \cong \overline{D E}$
Q. 13	$\operatorname{Sec} 45^{0}$ is equal to A. $\frac{1}{\sqrt{2}}$ B. $\sqrt{2}$ C. $\frac{2}{\sqrt{3}}$ D. $\frac{\sqrt{3}}{2}$	Q. 14	Consider the given figure. Which of the following statements is correct according to Pythagoras theorem? A. $\|\overline{A B}\|^{2}=\|\overline{A C}\|^{2}+\|\overline{B C}\|^{2}$ B. $\|\overline{A C}\|^{2}=\|\overline{A B}\|^{2}+\|\overline{B C}\|^{2}$ C. $\|\overline{B C}\|^{2}=\|\overline{A C}\|^{2}+\|\overline{A B}\|^{2}$ D. $\|\overline{A B}\|^{2}=\|\overline{A C}\|^{2}=\|\overline{B C}\|^{2}$
Q. 15	One and only one line passes through two distinct points. The given statement is A. an axiom. B. a postulate. C. a theorem. D. a corollary.	Q. 16	In algebraic expression $y^{3}+8, \mathrm{y}$ is a : A. Constant B. Variable C. Coefficient D. Exponent
Q. 17	The equivalent of $(10)_{8}$ in base 10 number system will be A. 8 B. 10 C. 16 D. 20	Q. 18	All of the following are perfect square EXCEPT: A. 144 B. 169 C. 196 D. 255
Q. 19	5,5,5,6,5,7,6, 8, 7 Which of the following values has the lowest frequency in the given data? A. 8 B. 7 C. 6 D. 5	Q. 20	The factorization of $9 a^{2}-12 a b+4 b^{2}$ is equal to A. $(9 a+4 b)(9 a-4 b)$ B. $(9 a-4 b)(9 a-4 b)$ C. $(3 a-2 b)(3 a+2 b)$ D. $(3 a-2 b)(3 a-2 b)$
Q. 21	Which of the following is a hexagon? A. B. D.	Q. 22	In the given triang x which of the following trigonometric ratios \qquad ve used to calculate the value of x ? A. $\operatorname{Tan} \theta$ B. $\operatorname{Sin} \theta$ C. $\operatorname{Cosec} \theta$ D. $\operatorname{Cos} \theta$

Q. 23	Consider the given figure. Which of the following is true? A. $m \overline{O A}>m \overline{O B}$ B. $m \overline{O A}=m \overline{O B}$ C. $m \overline{O A}<m \overline{O B}$ D. $m \overline{O A} \geq m \overline{O B}$	Q. 24	If $X=\{4,6,8,9,10,12,14,15\}$ then one of the subsets of X will be A. $\{4,5,6\}$ B. $\{8,9,10\}$ C. $\{12,13,14\}$ D. $\{9,10,11\}$	
Q. 25	Which of the following represents simultaneous linear equations? A. $\begin{aligned} & 3 x+5 y=5 \\ & x+2 y=1 \end{aligned}$ B. $\begin{aligned} & \frac{3}{x}+\frac{5}{y}=5 \\ & \frac{1}{x}+\frac{2}{y}=1 \end{aligned}$ C. $\begin{aligned} & 3 x^{2}+5 y^{2}=5 \\ & x+2 y=1 \end{aligned}$ D. $\begin{gathered} 3 x^{-1}+5 y^{-1}=5 \\ x+2 y=1 \end{gathered}$	Q. 26	In $\triangle \mathrm{ABC}$, the trigonometric ratio $\frac{a}{b}$ is equal to A. Cos θ B. $\operatorname{Sec} \theta$ C. $\operatorname{Tan} \theta$ D. $\operatorname{Cot} \theta$	
Q. 27	If $X=\{a, b\}$ and $Y=\{a, b, c\}$ then A. $X \subset Y$ B. $Y \subset X$ C. $X \supset Y$ D. $X \supseteq Y$	Q. 28	The power set of $A=\{-,+\}$ will be A. $\{\varnothing\}$ B. $\{\{-\},\{+\}\}$ C. $\{\{\varnothing,\{+\},\{-\}\}$ D. $\{\varnothing,\{-\},\{+\},\{+,-\}\}$	
Q. 29	In the given figure, $\overline{\mathrm{AB}}$ represents A. chord. B. diameter. C. secant. D. tangent.	Q. 30	The degree of the given polynomial $3 x^{2} y^{3}+x^{2} y+4 y z$ will be A. 6 B. 5 C. 4 D. 3	
Q. 31	Which of the following is a polynomial? A. $\sqrt{x}+b y$ B. $x+b y$ C. $x^{-1}+b y^{-1}$ D. $\frac{1}{x}+b y$	Q. 32	Consider the given figure ${ }^{\mathrm{f}} \overline{A B} \\| \overline{D E}$ and $\overline{A D} \cong \overline{D C}$ then A. $\overline{C E} \cong \overline{E B}$ B. $\overline{C E} \cong \overline{C B}$ C. $\overline{C E} \cong \overline{A C}$ D. $\overline{C E} \cong \overline{A B}$	

Q. 33	If the sides of a triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm , then its area can be calculated by: A. $\sqrt{6(6-3)(6-4)(6-5)} \mathrm{cm}^{2}$ B. $\sqrt{6(6+3)(6+4)(6+5)} \mathrm{cm}^{2}$ C. $\sqrt{(6+3)(6+4)(6+5)} \mathrm{cm}^{2}$ D. $\sqrt{(6-3)(6-4)(6-5)} \mathrm{cm}^{2}$	Q. 34	Which of the following is an irrational number? A. 0.375 B. $0.666666 \ldots$ C. $0.515151 \ldots$ D. $0.314728 \ldots$
Q. 35	The result of $(10)_{5}+(44)_{5}$ will be A. $(54)_{5}$ B. $(104)_{5}$ C. $(114)_{5}$ D. $(414)_{5}$	Q. 36	Which of the following is a polygon? A. B. C. D.
Q. 37	$4 x^{2}-y^{2}$ is equal to A. $(y+2 x)(y+2 x)$ B. $(2 x-y)(2 x-y)$ C. $(2 x+y)(2 x-y)$ D. $(y-2 x)(y+2 x)$	Q. 38	If the market price of a wall clock is 1050 rupees and is sold for 750 rupees then discount $\%$ will be calculated as A. $\frac{1050-750}{1050} \times 100$ B. $\frac{1050+750}{750} \times 100$ C. $\frac{1050-750}{750} \times 100$ D. $\frac{1050+750}{1050} \times 100$
Q. 39	If radius of a sphere is 2 cm then its surface area will be A. $4 \pi \mathrm{~cm}^{2}$ B. $16 \pi \mathrm{~cm}^{2}$ C. $32 \pi \mathrm{~cm}^{2}$ D. $60 \pi \mathrm{~cm}^{2}$	Q. 40	$\operatorname{Sin}(90-\theta)$ is equal to A. $\operatorname{Cos} \theta$ B. $\operatorname{Cosec} \theta$ C. $-\operatorname{Cos} \theta$ D. $-\operatorname{Cosec} \theta$

MODEL PAPER MATHEMATICS (ENGLISH VERSION)

| Student Name___ Roll No | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Section B: Constructed Response Questions Marks: 60 Time: 2 hours

Q.1.

If $U=\{$ Sat, Sun, Mon, Tues, Wed $\}$
$A=\{$ Sat, Mon $\}$
$B=\{$ Sun, Tues $\}$
Then prove that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Q.2 Find the square root of $\sqrt{1.44}$
(6 Marks)
i. Using division method ii. Using prime factorization method
Q.3. Multiply $(234)_{5}$ by $(476)_{8}$ and write the answer in decimal number system.
(6 Marks)
Q.4. Naeem bought a chair for Rs. 500 and sold it for Rs. 650 . Find profit or loss percentage.
Q.5. Divide $2 x^{3}-4 x^{2}+5 x-3$ by $x-1$
Q.6. If $x-\frac{1}{x}=4$, then find values of $x^{2}+\frac{1}{x^{2}}$ and $x^{4}+\frac{1}{x^{4}}$
(6 Marks)
Q.7. Construct a right angled triangle $P Q R$, with $\mathrm{m} \angle \mathrm{Q}=90^{\circ}$, when hypotenus $=5 \mathrm{~cm}$ and base $=2 \mathrm{~cm}$.

Also write steps of construction.
Q.8. Find the surface area and volume of a sphere, if its radius is 1.4 m .
Q.9.Consider the given figure.

Two lines $\overline{D X}$ and $\overline{A Y}$ intersect each other at point O .
Prove that $\angle 1 \cong \angle 3$
Q.10. Following are the marks obtained by Hajira in seven subjects during $1^{\text {st }}$ term examinations.
$73,55,71,66,66,73,55$. Find the weighted mean of her marks.
(6 Marks)

