A-PDF Watermark DEMO:

FEDERAL PUBLIC SERVICE COMMISSION MO: Purchase Composition Purchase Composition FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS MAXIMUM MA			
NOTI		Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A& ONE Question from SECTION-C. ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at discussion.	
		 places. Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book mube crossed. 	
	(v) (vi)	Extra attempt of any question or any part of the attempted question will not be considered Use of Calculator is allowed.	1.
SECTION-A			
Q. 1.	(a)	Prove that the normaliser of a subset of a group G is a Subgroup of G . (10)))
	(b)	Let A be a normal subgroup and B a subgroup of a group G . Then prove that $\langle A,B \rangle = AB$ (10))) (20)
Q. 2.	(a)	Let <i>a</i> be a fixed point of a group <i>G</i> and consider the mapping I_a : $G \rightarrow G$ defined (10 by $I_a(g) = aga^{-1}$ where $g \in G$.)
		Show that I_a is an automorphism of O . The show that for u_i $O = O$, $I_a : I_b = I_{ab}$)) (20)
	(b)	Let $M_2(R) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in R \right\}$ be the set of all 2×2 matrices with	
		real entries. Show that ($M_2(R)$, +, ·) forms a ring with identity. Is ($M_2(R)$, +, ·) a field?	
Q. 3.	(a)	Let $T: X \rightarrow Y$ be a linear transformation from a vector space X into a Vector (10) space Y. Prove that Kernal of T is a subspace.))
	(b)	Find the value of λ such that the system of equations (10))) (20)
		$x + \lambda y + 3z = 0$	
		$4x + 3y + \lambda z = 0$	
		2x + y + 2z = 0	
		has non-trivial solution.	
		<u>SECTION-B</u>	
Q. 4.	(a)	Using $\delta - \epsilon$ definition of continuity, prove that the function $Sin^2 x$ is continuous (10) for all $x \in \mathbb{R}$.	
	(b)	Find the asymptotes of the curve $(x^2 - y^2)(x + 2y) + 5(x^2 + y^2) + x + y = 0$ (10)	(20)
Q. 5.	(a)	Prove that the maximum value of $\left(\frac{1}{x}\right)^x$ is $e^{1/e}$ (10)	

PURE MATHEMATICS

- **Q. 6.** (a) Find the area enclosed between the curves $y=x^3$ and y=x. (10)
 - (b) A plane passes through a fixed point (a, b, c) and cuts the coordinate axes in (10) (20) A,B,C. Find the locus of the centre of the sphere OABC for different positions of the plane, O is the origin.

SECTION-C

Q. 7. (a) Determine ^{P(z)} where (10)
P(z)=(z-z₁)(z-z₂)(z-z₃)(z-z₄) with z₁ = e^{iπ/4}, z₂ = z
₁, z₃ = -z₁ and z₄ = -z
₁.
(b) Find value of the integral ∫_c(z - z
₀)ⁿ d z, (n any integer) along the circle C (10) (20)with centre and z
₀ radius r, described in the counter clock wise direction.
Q. 8. (a) Use Cauchy Integral Formula to evaluate ∫_c c o h z + s i 2 z / z - T/2 dz along the simple closed counter C: | z |=3 described in the positive direction.
(b) State and prove Cauchy Residue Theorem. (10) (20)
