

PHYSICS, PAPER-II

TIME AL	LOWED: THREE HOURS (CQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS MAXIMUM MARKS	
NOTE: (i) (ii) (iii	Part-II is to be attempted on the sepa Attempt ONLY FOUR questions from) All the parts (if any) of each Questic places.	n PART-II. ALL question		ifferent
(v) (vi)	Candidate must write Q. No. in the Ar No Page/Space be left blank between be crossed. Extra attempt of any question or any p	n the answers. All the bla	ank pages of Answer Boo	k mus
(VII	Use of Calculator is allowed.	PART-II		
Q. No. 2.	 (a) Define electric field intensity \$\vec{E}\$. State its value for a point charge and give its units. (b) State differential form of Gauss's law and from there develops the poisson's & Laplace's equations. 			(8) (8)
	c) A charge of $10\sqrt{2}$ Coulomb is located at $(3\hat{i} + 4\hat{j} + 5\hat{k})m$. Calculate the electric field intensity at a point having position vector $(5\hat{i} + 4\hat{j} + 3\hat{k})m$.			(4)
Q. No. 3.	 a) Differentiate between a series and parallel resonant circuits. b) Explain the construction and operation of a transformer. What are energy losses in a transformer and how are they reduced to a minimum. 			(6) (10)
	(c) A series <i>LCR</i> circuit contains a and a resistor with $R=50\Omega$. Cal between current and voltage. (Take	culate the impedance an		(4)
Q. No. 4.	 (a) State and explain the basic postul. (b) Briefly explain with examples what (c) Derive the time-dependent Schrod 	t do you mean by Eigen fu	nction and Eigen values.	(5) (5) (10)
Q. No. 5.	a) Why the resistivity of metals increases with temperature but that of semiconductor decreases?			(6)
	(b) In the process of making semic Germanium?	onductor devices, why s	silicon is preferred over	(4)
	(c) Briefly explain the construction (BJT). How it can be used as an A		olar Junction Transistor	(10)
Q. No. 6.	 (a) What do <111>, [010], (111), and (b) What is packing factor? Determine (c) With neat diagram showing X-ray d 	e the Atomic Packing fac	tor of FCC lattice.	(5) (5) (10)
Q. No. 7.	Define Curie and Becquerel. Establish Calculate the Decay Constant for 14 C w State and explain Half-life and Mean greater than T _{1/2} .	which has half-life of 5730) years.	(6) (4) (10)