Q.1: Write the answers of the following questions. (2 x 10 = 20)

i. State Stoke’s theorem in vector calculus and give its mathematical form.

ii. What do you mean by the co-efficient of kinetic friction?

iii. Can two vectors having different magnitudes be combined to give zero resultant? Can three vectors?

iv. State and prove work-energy theorem.

v. What is conservative force? Give two examples.

vi. What is meant by pseudo force? Why is centrifugal force a pseudo force?

vii. Differentiate between elastic and inelastic collision.

viii. Why the earth does not fall towards the sun due to its attraction?

ix. State parallel axis theorem.

x. In conical pendulum, what happens to the period and the speed when $\theta=90^\circ$. Discuss the case for $\theta=0$.

Q.3: (2+5, 3)

a) State and prove Gauss’s Divergence theorem.

b) A conical pendulum is formed by attaching a 53g pebble to a 1.4m string. The pebble swings around in a circle of radius 25cm.

 a) What is the speed of pebble?

 b) What is acceleration?

 c) What is tension in string?

Q.4: (5, 5)

a) Explain work done by the variable force in one dimensional case with an example of spring force.

b) A child pulls a 5.6kg sled a distance of 12m along a horizontal surface at a constant speed. What work does the child do on the sled if the coefficient of kinetic friction μ_k is 0.20 and the cold makes an angle of 45° with the horizontal?

Q.5: (6, 4)

a) Calculate rotational inertia of a solid cylinder about an axis passing through its center and perpendicular to its axis of symmetry.

b) A Chrysler of mass 2210kg is moving along a straight road at 105 kmh$^{-1}$. It is followed by a ford with mass 2080kg moving at 43.5kmh$^{-1}$. How fast is the center of mass of two cars moving?
Tick the correct statement.

(1 x 10 = 10)

1. A car is taking a turn on level road. It may be thrown outward because of the
 (a) Reaction of ground
 (b) Frictional force
 (c) Lack of centripetal force
 (d) Weight

2. If distance covered by a particle is zero, then what can we say about its displacement?
 (a) it cannot be zero
 (b) it is negative
 (c) it must be zero
 (d) it may or may not be zero

3. Stock’s theorem gives the relationship between:
 (a) line integral and density
 (b) line integral and Area integral
 (c) line integral and surface integral
 (d) line integral and volume integral

4. A body of mass 4.5g is dropped from rest at a height 10.5m above surface of earth. What
 will be its speed just before it strikes the ground?
 (a) 14.345m/s (b) 13.534m/s (c) 14.540m/s (d) 40.5m/s

5. The unit of angular momentum is:
 (a) Js (b) kgm²s⁻¹ (c) kg (d) a & b both

6. Center of mass of uniform rod of length L lies at
 (a) L/3 (b) 2L/3 (c) L/2 (d) None of the above

7. A tangential speed to prevent an object from slipping is given by
 (a) \(v = \sqrt{\frac{gR}{\mu_s}} \)
 (b) \(v = \sqrt{\frac{R}{\mu_s}} \)
 (c) \(v = \sqrt{\frac{g}{\mu_s}} \)
 (d) None of the above

8. The moment of momentum is called:
 (a) impulse (b) angular momentum (c) coupled (d) torque

9. The work done will be maximum when
 (a) 0⁰ (b) 45⁰ (c) 90⁰ (d) 180⁰

10. A body is rotating with angular frequency 5 radian per sec in a circular path of radius 2
 m. Its tangential linear velocity is:
 (a) 5 m/s⁻¹ (b) 2 m/s⁻¹ (c) 7 m/s⁻¹ (d) 10 m/s⁻¹
UNIVERSITY OF THE PUNJAB
First Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Waves, Oscillations and Optics
Course Code: PHY-102

TIME ALLOWED: 2 hrs. & 30 mins.
MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

Section II

Question No. 2

Write short answers of the following questions.

\((2 \times 10) \)

i. If taken to the moon would there be any change in the frequency of oscillation of torsional pendulum? A simple pendulum?

ii. Derive the total mechanical energy in case of simple harmonic motion.

iii. In case of diffraction grating draw the phasors to show the conditions for the central maximum and minimum for zero intensity if (a) \(N=2 \), (b) \(N=5 \) (n is no. of slits)

iv. Spherical waves travel from a source of waves whose power output is assumed to be constant. How does the wave intensity depend on the distance from the source?

v. Explain the special case for which the physical pendulum becomes a simple pendulum.

vi. A spring has a force constant \(k \) and an object of mass \(m \) is suspended from it. The spring is cut in half and the same object is suspended from one of the halves. How the frequencies of oscillations before and after the spring is cut, related?

vii. For a damped oscillator \(m=250g \), \(k=85N/m \), what is the time period of motion?

viii. Does dispersion and resolving power depends upon spacing grating \(d \), explain with expressions.

ix. In polarization what is the Brewster’s angle?

x. Two polaroids have their axes of transmission parallel so that intensity of transmitted light is maximum. Through what angle must either Polaroid be turned to make the intensity fall by one half of its maximum value?

Section III

Question No. 3

(a) Derive in detail the average power, which is an average rate at which energy is transmitted by the wave, is given by

\[P_{\text{avg}} = \frac{1}{2} \mu \nu \omega^2 y_m^2 \]

(b) A transverse wave is generated on the string, wave moves up and down through a distance of 1.30cm. The motion is repeated 125 times per second. If string has linear
mass density of 0.251 Kg/m and is kept under tension of 96 N, Find (a) amplitude (b) frequency (c) speed (d) wavelength.

(6+4)

Question No. 4

(a) Describe the concept of diffraction from multiple slits assuming an idealized diffraction-grating containing five slits. Also calculate the angular width for the principal maximum corresponding to the order m.
(b) A light of wavelength 630 nm illuminates a certain grating. The grating has 10^4 slits with a spacing of 2100 nm. Find
(i) The angular position of all principal maxima observed
(ii) The angular width of the largest-order maximum.

(6+4)

Question No. 5

(a) How the polarization occurs by the process of reflection?
(b) We wish to use a plate of glass ($n=1.50$) in air as a polarizer. Find the polarizing angle and the angle of refraction.

(5+5)
UNIVERSITY OF THE PUNJAB
First Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Waves, Oscillations and Optics
Course Code: PHY-102

TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

Section 1

Question No. 1 Choose the right answer:

(i) The torsional oscillator is also known as
 a) Simple pendulum
 b) Torsional pendulum
 c) Physical pendulum

(ii) In oscillatory motion when body passes through its origin its velocity becomes
 a) Maximum
 b) Minimum
 c) None

(iii) In double slit interference, intensity of the resultant wave at any point P varies from
 a) 0 to $8I_0$
 b) 0 to $6I_0$
 c) 0 to $4I_0$

(iv) In case of diffraction by increasing No. of slits for given wavelength the width the central maximum becomes
 a) Broader
 b) Sharper
 c) Disappears

(v) Wave speed in non dispersive medium depends upon
 a) Linear mass density
 b) Tension in the string
 c) Both a and b
vi. In case of damped harmonic oscillation for the highest value of “b” i.e. $b = 2\sqrt{(km)}$, the life time τ has
 a) Lowest value equal to $2m/b$
 b) Highest value equal to $2b/m$
 c) Zero value

vii. 0.25 kg of mass is oscillating with time period of 0.34 sec. the value of spring constant of its spring is
 a) 58.3 N/m
 b) 76.3 N/m
 c) 85.3 N/m

viii. In Doppler effect there is an apparent change in
 a) Frequency
 b) Wavelength
 c) Velocity

ix. The condition for interference from thin films, the maxima occurs at
 a) $2dn = (m+1/2)\lambda$
 b) $2dn = m\lambda$
 c) $2d = m\lambda_n$

x. Yellow light of wavelength 589 nm illuminates a Michelson-interferrometer. If the mirror is moved through 1.00 cm the no. of bright fringes will be
 a) 33700 fringes
 b) 35098 fringes
 c) 33956 fringes
Q. 2 Write short answers to the following questions:
1. What happens to the period and speed of conical pendulum when θ = 0.
2. If \(\vec{A} = 2\vec{T} - \vec{j} \) and \(\vec{B} = 4\vec{T} + \vec{j} \). Find the cross product \(\vec{A} \times \vec{B} \).
4. What is meant by vector differential operator?
5. A spring has a spring constant 15 N cm\(^{-1}\). How much work is needed to extend through 7 cm.
7. What is use of Fresnel biperism?
8. State and prove Torricelli's theorem.
9. Explain briefly the relation between torque and angular momentum.
10. State parallel axis theorem.

(Essay-type questions)

Q. 3
(a) What is diffraction grating? Derive a relation for wavelength of light used. Also calculate angular separation between spectral lines, per unit wavelength?

(b) A pipe of diameter 30 cm carrying water moves with a speed of 2.5 m s\(^{-1}\). How much time will it take to discharge 2000 m\(^3\) of water?

Q. 4
(a) What is moment of inertia? Calculate the moment of inertia of a solid sphere about its diameter.

(b) A conical pendulum is formed by attaching a 53 g pebble to a 1.4 m string. The pebble swings around in a circle of radius 25 cm.

(i) What is the speed of pebble?
(ii) What is its acceleration?
(iii) What is tension in string?
UNIVERSITY OF THE PUNJAB
First Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Physics-I (Mechanics & Optics)
Course Code: PHY-111 / _
TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

Q. 1 Encircle the correct option:-

1. The curl of a gradient of a scalar function is always equal to
 (a) unity
 (b) zero
 (c) constant
 (d) non-zero

2. If a scalar function $\phi = \frac{3}{r}$ where $\vec{r} = xi + yj + zk$ then Grad ϕ is
 (a) $\frac{\vec{r}}{r^2}$
 (b) $\frac{\vec{r}}{r^3}$
 (c) $\frac{r}{r^3}$
 (d) $\frac{\vec{r}}{r}$

3. Stock’s theorem gives the relationship between
 (a) line integral and density
 (b) line integral and area integral
 (c) line integral and surface integral
 (d) line integral and volume integral

4. A body rotates about an axis, its different particles have
 (a) same angular and different linear velocity
 (b) same angular and same linear velocity
 (c) different angular and same velocity
 (d) different angular and same linear velocity

5. Bernoulli’s theorem deals
 (a) law of conservation of mass
 (b) law of conservation of energy
 (c) law of conservation of momentum
 (d) law of conservation of charge

6. If a student standing on a turn table with dumbbells in his hands, he suddenly with draws his hand to his chest, the angular velocity of table will
 (a) increase
 (b) decrease
 (c) remain the same
 (d) become double

7. A body of mass 50 kg is allowed to fall under the action of gravity 10 ms^{-1}. Its weight will be
 (a) 500 N
 (b) 50 N
 (c) zero
 (d) 1000 N

8. The velocity of light was determined accurately by
 (a) Newton
 (b) Huygen
 (c) Michelson
 (d) Young

9. The angle between viscous drag force and direction of flow of fluid is
 (a) 0°
 (b) 45°
 (c) 90°
 (d) 180°

10. The dimension of centripetal force is equal to
 (a) MT^2/L
 (b) ML/T^2
 (c) MT/L^2
 (d) MT^2/L
Section-II (Subjective Type)

Question no. 2: Write short answers of the following questions.

(i) Give the statement of parallel-axis theorem.
(ii) Briefly explain scalar product and vector product.
(iii) An object is launched into the air with an initial velocity given by \(\vec{V} = 4.9\hat{i} + 9.8\hat{j} \) m/s. Ignore air resistance, find the magnitude of the velocity at the initial point and at the highest point.
(iv) Derive the rotational form of Newton’s second law of motion.
(v) State the law of conservation of linear momentum.
(vi) The angle turned through by the flywheel of a generator during a time interval \(t \) is given by, \(\Phi = at + bt^3 - ct^4 \), find the expression of angular velocity and angular acceleration.
(vii) State the work-energy theorem.
(viii) What are nonconservative forces?
(ix) State the Newton’s law of universal gravitation and write its vector form.
(x) What is interference of waves and explain interference of waves with the help of phase difference.

Question No. 3:

(a) Find the acceleration of center of mass of a two particle isolated system.

(b) If an electron (mass \(m = 9.11 \times 10^{-31} \) kg) in copper near the lowest possible temperature has a kinetic energy of \(6.7 \times 10^{-19} \) J, what is the speed of the electron?

Question No. 4:

(a) Define and explain momentum, also describe impulse-momentum theorem.

(b) What are the direction cosines? Calculate the value of each.

Question No. 5:

(a) Differentiate between longitudinal and transverse wave. Also discuss standing waves and find the equation of a standing wave.

(b) What should be the length of a simple pendulum whose period is 1.0 second at a place where \(g \) is 9.8 m/s\(^2\). What is the frequency of such pendulum?
UNIVERSITY OF THE PUNJAB

First Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Mechanics and Wave Motion (IT)
Course Code: PHY-121

TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

Section – I (Objective Type)

Question no. 1: Choose the correct answer from the given options. Overwriting, cutting and erasing is not allowed.

1. Angle between two vectors A and B can be determined by
 (a) their dot product
 (b) their cross product
 (c) head to tail rule
 (d) none

2. Projectile motion is a
 (a) One dimensional motion
 (b) Two dimensional motion
 (c) Three dimensional motion
 (d) None

3. Suppose the net force F on an object is a nonzero constant. Which of the following could also be constant?
 (a) Position
 (b) Speed
 (c) Velocity
 (d) Acceleration

4. $\vec{a} \times \vec{r}$ gives us
 (a) Linear acceleration
 (b) Radial acceleration
 (c) Tangential Acceleration
 (d) None

5. A field in which the work done in a moving a body along closed path is zero is called
 (a) Electric field
 (b) Conservative field
 (c) Gravitational field
 (d) None

6. Torque is defined as
 (a) cross product of position vector and force
 (b) turning effect of force
 (c) product of force and moment arm
 (d) all a, b and c are correct

7. During simple harmonic motion of mass-spring when block is at equilibrium position, its
 (a) P.E is Maximum
 (b) K.E is Maximum
 (c) P.E and K.E are equal
 (d) P.E and K.E both are zero

8. The time period "T" of physical pendulum is given
 (a) $2\pi \sqrt{k/I}$
 (b) $2\pi \sqrt{I/k}$
 (c) $\frac{1}{2\pi} \sqrt{k/I}$
 (d) $\frac{1}{2\pi} \sqrt{I/k}$

9. For a simple pendulum the restoring force is caused by
 (a) gravity
 (b) spring
 (c) hand
 (d) none

10. The wave form of S.H.M. is
 (a) square wave
 (b) standing wave
 (c) sine wave
 (d) none
UNIVERSITY OF THE PUNJAB

Second Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Electricity & Magnetism
Course Code: PHY-103

TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

Section - I (Objective Type)

Q.1. Each question has four possible answers, select the correct answer and encircle it.

Overwriting, cutting, erasing or use of lead pencil will carry zero credit. (1x10 = 10)

(i) Electric field inside a uniform shell of charge is
 (a) zero (b) negative (c) positive (d) infinity

(ii) A conductor of resistivity ρ has current density \vec{J}. If \vec{E} is the electric field intensity applied
 inside, then its value is equal to
 (a) $\frac{\rho}{\vec{J}}$ (b) $\frac{\rho}{\varepsilon}$ (c) $\rho \vec{J}$ (d) $\frac{\vec{J}}{\rho}$

(iii) The electric field intensity between two oppositely charged plates is
 (a) $E = \frac{\sigma}{2\varepsilon_0}$ (b) $E = \frac{\varepsilon_0}{2\sigma}$ (c) $E = \frac{\sigma}{\varepsilon_0}$ (d) $E = \frac{\sigma \varepsilon_0}{2}$

(iv) The SI unit of magnetic induction is
 (a) Gauss (b) Oersted (c) Weber (d) Tesla

(v) A moving charge will produce
 (a) electric field (b) magnetic field (c) both (a) and (b) (d) none as above

(vi) The value of Bohr magneton is
 (a) $\frac{e}{4\pi m}$ (b) $\frac{eh}{2\pi m}$ (c) $\frac{eh}{4\pi m}$ (d) $\frac{eh}{\pi m}$

(vii) Which of the following law was modified by Maxwell by introducing displacement current
 (a) Ampere's law (b) Faraday's law (c) Gauss's law (d) Biot-Savart's law

(viii) The integral involved in the expression of Ampere's law is of the form of
 (a) volume integral (b) surface integral (c) line integral (d) none as above

(ix) In an electromagnetic wave the average energy density associated with magnetic field will be
 (a) $\frac{1}{2} LI^2$ (b) $\frac{B^2}{2\mu_0}$ (c) $\frac{1}{2} \mu_0 B^2$ (d) $\frac{\mu_0}{2B^2}$

(x) Electromagnetic waves are produced by
 (a) an accelerating charge (b) a stationary charge
 (c) chargeless particles (d) a moving charge
Q.2. Write short answers of the following questions:

i. State shell theorems for electric field.
ii. In the median plane of an electric dipole, is the electric field parallel or antiparallel to the electric dipole moment \(\vec{p} \).
iii. Differentiate between semiconductor and superconductor.
iv. Define the term “motional EMF”.
v. Show that, the capacitance with dielectric is given by \(C' = K_e C \)
vi. Is there any way to set up a magnetic field other than by causing charge to move?
vii. Define current density and Lorentz force?
viii. State Gauss law for magnetism.
ix. In Faraday’s law of induction does the induced EMF depend on the resistance of the circuit?
x. Write down mathematical forms of Maxwell’s equations.

Q.3: (a) By using Gauss’ law find out electric field intensity at a point lying inside a spherical volume distribution of uniform charge density.
 (b) Describe briefly the process of calculating the electric field from the electric potential.

Q.4: (a) State Lenz’s law. Show that Lenz’s law is in accordance with the law of conservation of energy.
 (b) Derive an expression for torque acting on a current carrying loop placed in a uniform external magnetic field \(\vec{B} \).

Q.5: (a) How do you distinguish between \(\varepsilon \) and \(\mu \)? How are they related with velocity of electromagnetic waves in free space.
 (b) Describe in details energy transport in terms of Poynting vector.
UNIVERSITY OF THE PUNJAB
Second Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Thermodynamics and Kinetic Theory
Course Code: PHY-104
TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

Section I (Objective Type)

Choose the best option

1. The internal energy of one mole of an Ideal gas depends upon:
 i) Temperature
 ii) Pressure
 iii) Volume
 iv) None of above
2. Work done by an expanding gas under adiabatic condition results in
 i) Decrease in temperature
 ii) Increase in temperature
 iii) No change in temperature
 iv) First increase then decrease in temperature
3. White clothes in Hot climate are recommended as these are good
 i) Emitter
 ii) Absorber
 iii) Radiator
 iv) Reflector
4. Which of the following is not a State Function of the system
 i) Pressure
 ii) Temperature
 iii) Internal Energy
 iv) Heat
5. Cloud formation in the atmosphere is an example of
 i) Isothermal process
 ii) Adiabatic process
 iii) Isochoric process
 iv) Cyclical process
6. In Carnot Engine, change in internal energy in one Cycle is
 i) Positive
 ii) Negative
 iii) Constant
 iv) Zero

P.T.O.
7. The efficiency of the Carnot engine in terms of Q_1 (Heat absorbed) and Q_2 (Heat rejected) is:
 i) $1 - (Q_2/Q_1)$
 ii) $1 - (Q_1/Q_2)$
 iii) $1 + (Q_2/Q_1)$
 iv) $1 + (Q_1/Q_2)$

8. Ten identical particles are to be divided up into two containers, how many microstates belong to the configuration of three particles in one container and seven in the other
 i) 120
 ii) 30240
 iii) 3628800
 iv) 6.3×10^6

9. Which type of ideal gas will have the largest value of $C_p - C_v$:
 i) Monoatomic
 ii) Diatomic
 iii) Polyatomic
 iv) The value will be the same for all

10. Which of the following is a necessary condition for a process involving an ideal gas to do work:
 i) $\Delta T \neq 0$
 ii) $\Delta P \neq 0$
 iii) $\Delta V \neq 0$
 iv) $Q \neq 0$
UNIVERSITY OF THE PUNJAB
Second Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Thermodynamics and Kinetic Theory
Course Code: PHY-104

TIME ALLOWED: 2 hrs. & 30 mins.
MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

Section II
Give short answers to the following questions: \((4 \times 5)\)

1. State the zeroth law of thermodynamics and write conversion formulae between centigrade and Kelvin and also between centigrade and Fahrenheit scales. \((2+1+1)\)
2. Write the expressions for
 i) The Ideal gas law
 ii) The Virial Expansion
 iii) The van der Waals equation of state of real gases. \((1+1+2)\)
3. Define the following and write their units
 i) Molar Heat capacity
 ii) Peltier Coefficient \((2+2)\)
4. Drive the first TdS equation explaining the quantities involved. \((4)\)
5. The turbine in the steam power plant takes steam from a boiler at \(427^\circ C\) temperature reservoir and rejects at \(77^\circ C\), calculate its efficiency. \((4)\)

Section III \((10 \times 3)\)

1. Explain the Cycle of the Carnot Heat Engine with the help of Temperature-Entropy and Pressure-volume diagrams and also derive expression of its efficiency. \((10)\)
2. Explain the Seebeck Effect and the Seebeck coefficient also briefly explain its reverse effect. \((10)\)
3. Write brief notes on the following
 i) Thermal Expansion of Solids \((5)\)
 ii) Properties of the Ideal Gas \((5)\)
UNIVERSITY OF THE PUNJAB

Second Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Physics-II (Waves & Oscillation)
Course Code: PHY-113 /

TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

(Objective Type)

Q1. Encircle the correct answer out of the four given options. No mark will be given for cutting, over-writing, use of lead pencil and ink-remover.

(1x10=10)

(i) Sounds of frequency lower than 20 Hertz are called
 (a) supersonics
 (b) infrasonics
 (c) ultrasonics
 (d) audible sound waves

(ii) A thermodynamic process in which volume remains constant is called
 (a) isobaric
 (b) isochoric
 (c) isothermal
 (d) adiabatic

(iii) If the temperature of source increases, the efficiency of Carnot engine
 (a) decreases
 (b) increases
 (c) remains constant
 (d) first increases then decreases

(iv) A particle is moving in a circular path with constant angular speed. The motion of its projection along its any diameter is,
 (a) projectile motion
 (b) transatory motion
 (c) vibratory motion
 (d) circular motion

(v) A wave has wave speed 243 m/s and the wavelength 3.27 cm its frequency is,
 (a) 7.43KHz
 (b) 7.43Hz
 (c) 74.3Hz
 (d) 134.6Hz

(P.T.O.)
(vi) A thermodynamic process in which pressure remains constant is called
(a) isobaric process (b) isothermal
(c) isochoric (d) adiabatic

(vii) In Doppler effect, the apparent frequency of sound waves (having speed \(v\)) when observer moves towards a stationary source with speed \(v_o\) is,
(a) \((v+v_o/v)f\) (b) \((v/v-v_o/v)f\)
(c) \((v+v_o/v)f\) (d) \((v-v_o/v)f\)

(viii) When heat is added to a system the entropy change is
(a) zero (b) negative
(c) positive (d) none of these

(ix) A particle on a spring executes simple harmonic motion. If the mass of the particle and the amplitude are both doubled then the period of oscillation will change by a factor of
(a) 4 (b) 2
(c) 8 (d) \(\sqrt{2}\)

(x) A pulse on the string is inverted when it is reflected from
(a) a free end (b) rubber cord
(c) fixed end (d) both a & b
Q.2: Give short answers to the following questions (2x10=20)

1) Find the length of pendulum whose period is 3s at a location where g is 9.82ms\(^{-2}\).
2) Why we reduce pressure in tyres while moving on motorway?
3) Show that entropy remains constant during reversible process.
4) Explain principle of superposition of waves
5) How the efficiency of a heat engine can be increased?
6) Why sounds travel faster in hydrogen than in oxygen?
7) A wave has a wave speed of 263 m/s and a wavelength of 3.27m. Calculate the frequency and the period of the wave.
8) Show that the kinetic energy and potential energy of a simple harmonic oscillator, oscillates with time whereas the total mechanical energy remains constant. Also draw the graphs.
9) Define a cyclic process.
10) State first law of thermodynamics.

Q.3 (a) Define simple harmonic motion. Derive equation of motion of the simple harmonic oscillator and also write its solution.

(b) Show that the general formula for a traveling wave, \(y(x,t)=f(x\pm vt)\), is the solution of wave equation given below,

\[\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}\]

(5+5)

Q4: (a) Prove that the pressure exerted by an ideal gas in a cubical container of edge length \(L\), with perfectly elastic walls, depends on the root-mean-square speed of the molecules.

(b) Calculate root-mean-square speed of hydrogen molecules at 0.00 °C and 1.00atm pressure, assuming hydrogen to be an ideal gas. Under these conditions hydrogen has a density \(\rho\) of 8.99 x 10\(^{-2}\) kg/m\(^3\).

(7+3)

Q5: (a) Explain Carnot cycle in detail and show that the efficiency of a Carnot engine depends only on the temperature of the two reservoirs between which it operates.

(b) The turbine in a steam power plant takes steam from a boiler at 520° C and exhausts it into a condenser at 100°C. What is maximum possible efficiency?

(6+4)
UNIVERSITY OF THE PUNJAB

Second Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Electricity & Magnetism (IT)
Course Code: PHY-122 /

TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

SECTION I
Objective Part

Question no.1: Choose the best option.

(10×1=10)

1) Which of the following laws are applicable for the behavior of perfect gas?
 a) Boyle’s Law
 b) Gay-Lussac’s Law
 c) Charles’s Law
 d) All of these.

2) The internal energy of the ideal gas depends upon ____________.
 a) Temperature
 b) Pressure
 c) Volume
 d) None of these

3) In Carnot engine, change in internal energy per cycle is ____________.
 a) Positive
 b) Negative
 c) Zero
 d) Changes at every cycle

4) What is a process during which the pressure remains constant?
 a) Adiabatic process
 b) Isochoric process
 c) Isothermal process
 d) Isobaric process

5) The sum of all the microscopic form of energy is called ____________.
 a) Total energy
 b) Internal energy
 c) System energy
 d) None of these.

6) The electric field intensity between two oppositely charged plates is ____________.
 a) \(E = \sigma / 2 \varepsilon_0 \)
 b) \(E = \varepsilon_0 / 2 \sigma \)
 c) \(E = \sigma / \varepsilon_0 \)
 d) \(E = \varepsilon_0 / 2 \)

7) The product (\(\vec{P} \times \vec{E} \)) is equal to ____________.
 a) Electric dipole
 b) Force
 c) Torque
 d) Electric potential

8) The surfaces are called equipotential surfaces, if they have ____________.
 a) Same potential
 b) Different field
 c) Different potential
 d) All of these

9) The centers of two identical conducting spheres of radius \(R \) are separated by a distance \(d \). A charge \(q \) is on one sphere, and \(-q \) on the other. The capacitance of the system is \(C_0 \). Half of the charge is now removed so that charge on each sphere is half. The new capacitance \(C' \) is,
 a) \(C' = 2C_0 \)
 b) \(C' = 4C_0 \)
 c) \(C' = C_0 \)
 d) None of these

10) In Biot-Savart’s law, magnitude of magnetic field is inversely proportional to ____________.
 a) Applied current
 b) Apparent length
 c) \(1/r^2 \)
 d) \(r^2 \)
Question no.2: Write short answers of the following questions. (10×2=20)

1. State the zeroth law of thermodynamics.
2. Is it possible to construct a heat engine that will not expel heat into atmosphere? Why?
3. What is a Carnot engine? Which processes are involved in Carnot cycle?
4. What is irreversible process? Give an example of irreversible process.
5. Compare Isothermal Expansion and Adiabatic Expansion.
6. A proton moves perpendicularly to a uniform magnetic field \(B \) with velocity \(1.0 \times 10^7 \text{ m/s} \) and experiences an acceleration of \(2.0 \times 10^{13} \text{ m/s}^2 \) in the \(+x \) direction when its velocity is in the \(+z \) direction. Determine the magnitude and direction of the field. Mass of proton is \(1.67 \times 10^{-27} \text{ kg} \) and charge of proton is \(1.6 \times 10^{-19} \text{ C} \).
7. Show the mechanism of insulator in an electric field with the help of diagrams.
8. What are capacitors? Briefly explain.
9. What should be the orientation of a current-carrying coil in a magnetic field so that the torque acting upon the coil is,
 a) maximum
 b) minimum
10. State Faraday's law. How can we find the direction of induced current with the help of Lenz's law?

Question no.3: (5+5+5=15)

a) State Coulomb's law. Also write its vector form.

b) Using Gauss's law, find the electric field due to spherical shell of charges.

c) A uniform charged conducting sphere of 1.22m radius has a surface charge density of 8.13\(\mu \text{C/m}^2 \).
 i. Find the charge on sphere.
 ii. What is the total electric flux leaving the surface of sphere?
 iii. Calculate the electric field at the surface of the sphere.

Question no.4: (10+5=15)

a) Explain the Ampere's Law. Find the magnetic field due to a straight wire at its internal and external points by using Ampere's Law.

b) In the figure, the cube is 40.0 cm on each edge. Four straight segments of wire—ab, bc, cd, and da—form a closed loop that carries a current \(I = 5.00 \text{ A} \), in the direction shown. A uniform magnetic field of magnitude \(B = 0.020 \text{ T} \) is in the positive y direction.

(1) Determine the magnitude and direction of the magnetic force on segment ab.
(2) Determine the magnitude and direction of the magnetic force on segment bc.
UNIVERSITY OF THE PUNJAB

Third Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Concepts of Modern Physics
Course Code: PHY-201/

TIME ALLOWED: 2 hrs. & 30 mins.
MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

SUBJECTIVE PART

Note: Attempt all questions. Write to the point answer of theoretical part of each question.

Q. 2 Give to the point answer / short description of each question. (2 x 10 = 20)

i) Is the Compton effect more supportive of the photon theory of light than the photoelectric effect? Explain your answer.

ii) What is meant the concept of wave-particle duality? Explain briefly.

iii) Write down three important postulates of Bohr’s atomic model.

iv) In both the photoelectric effect and the Compton effect there is an incident photon and an ejected electron. What is the difference between these two effects?

vi) Write down energy and momentum operators.

vii) Write down the time independent Schrodinger wave equation.

viii) Just define the binding energy of a nucleus?

ix) What is the origin of characteristics X-ray? Explain with the aid of diagram.

x) What is meant by p- and n-type semiconductors? Give at least one example of each.

Q. 3

a) What is de Broglie hypothesis? Describe in detail how Davisson and Germer test/verify the de Broglie hypothesis? (2 + 5)

b) Find the wavelength of the spectral line that corresponds to a transition in hydrogen atom from n = 6 state to the n = 3 state. In what part of the spectrum is this? (2 + 1)

Q. 4 What is meant by a nuclear reaction? Write down Q-value equation of a general nuclear reaction and explain what are exothermic and endothermic nuclear reactions? (10)

Q. 5 What is Compton effect? Derive Compton shift equation. (10)
UNIVERSITY OF THE PUNJAB
Third Semester 2015
Examination: B.S. 4 Years Programme

PAPER: Concepts of Modern Physics
Course Code: PHY-201/

TIME ALLOWED: 30 mins.
MAX. MARKS: 10

Attempt this Paper on this Question Sheet only.

OBJECTIVE PART

Q. 1 Encircle the correct answer (from the given multiple choices) in each part. (1 × 10 = 10)

A) What is the effect of increasing the wavelength of the light that falls on the emitter in a photoelectric effect apparatus?
 i) The work function decreases.
 ii) The cutoff frequency decreases.
 iii) The stopping potential decreases.
 iv) The time delay for emission of photoelectrons increases.
 v) None of the above.

B) How does the maximum Compton shift $\Delta \lambda_{\text{max}}$ depend on the incident wavelength λ?
 i) $\Delta \lambda_{\text{max}} \propto \lambda^2$
 ii) $\Delta \lambda_{\text{max}} \propto \lambda$
 iii) $\Delta \lambda_{\text{max}}$ is independent of λ.
 iv) $\Delta \lambda_{\text{max}} \propto 1/\lambda$

C) Which of the following statements is a consequence of Planck’s radiation law?
 i) Atomic oscillators can emit and absorb energy at discrete values only.
 ii) Atomic oscillators can emit and absorb energy at discrete frequencies only.
 iii) Both (i) and (ii)
 iv) Neither (i) nor (ii)

D) If the particles listed all have the same de Broglie wavelength, which has the largest kinetic energy?
 i) Electron
 ii) α-particle
 iii) Neutron
 iv) Proton

E) For an electron trapped in an infinite one-dimensional potential well of width L, the minimum possible energy of the electron is
 (i) 0
 (ii) between 0 and $\hbar^2/8mL^2$
 (iii) $\approx \hbar^2/8mL^2$, but it is not possible to find the exact value because of the uncertainty principle.
 (iv) Exactly $\hbar^2/8mL^2$
F) Which of the following X-ray lines will have the greatest frequency in the given element?
i) K_a
ii) K_B
iii) L_a
iv) It depends on the element.

G) Why are fission fragments usually radioactive?
i) They come originally from radioactive ^{235}U.
ii) They have a large neutron excess.
iii) They have large binding energy per nucleon.
iv) They are moving at high speed.

H) In a nuclear reactor, the function of the moderator is

i) To absorb neutrons
ii) To keep the reactor from going critical.
iii) To slow down the neutrons.
iv) To absorb heat from the core.

I) The decay rate of a radioactive source is measured in units of ________, and the biological effect of that radiation on the human being is measured in units of ________.

i) Curies
ii) Roentgens
iii) rads
iv) rems

J) To make ordinary silicon into p-type semiconductor, we might add into it

i) indium
ii) antimony
iii) germanium
iv) carbon
Q.1. Each question has four possible answers, select the correct answer and encircle it. Overwriting, Cutting, erasing or use of lead pencil will carry zero credit.

(i) Intensity of electric field due to a charged metallic sphere as we move from its surface towards the center
 (a) remains unchanged (b) increases
 (c) decreases (d) becomes zero at all points

(ii) The electric field due to dipole at distant points in its median plane is
 (a) \(E = \frac{1}{4\pi \varepsilon_0} \frac{q}{x^2} \) (b) \(E = \frac{1}{4\pi \varepsilon_0} \frac{q}{x^2} \)
 (c) \(E = \frac{1}{4\pi \varepsilon_0} \frac{P}{x^2} \) (d) \(E = \frac{1}{4\pi \varepsilon_0} \frac{P}{x^2} \)

(iii) A dipole placed in external electric field, making an angle \(\theta \), experiences a minimum potential energy when \(\vec{E} \) and \(\vec{P} \) are
 (a) Parallel (b) anti-parallel (c) normal to each other (d) none of these

(iv) Which of the following does not significantly contribute to the magnetic properties of a substance?
 (a) Orbital magnetic moments of electrons (b) spin magnetic moments of electrons
 (c) Magnetic moments of protons and neutrons (d) all contribute equally

(v) Gauss' law for magnetism is
 (a) \(\int \vec{B} \cdot d\vec{A} = \frac{\mu_0}{\varepsilon_0} \) (b) \(\int \vec{B} \cdot d\vec{A} = 0 \)
 (c) \(\int \vec{B} \cdot d\vec{S} = \mu_0 i \) (d) \(\int \vec{E} \cdot d\vec{S} = -\frac{d\phi_m}{dt} \)

(vi) Which of the following quantities increases with increasing frequency?
 (a) \(R \) (b) \(L \) (c) \(X_C \) (d) \(X_L \)

(vii) Mathematical expression for Bohr magnetron is
 (a) \(\frac{e\hbar}{4\pi m} \) (b) \(\frac{e\hbar}{4\pi m} \)
 (c) \(\frac{e\hbar}{4\pi m} \) (d) \(\frac{\hbar}{4\pi m} \)

(viii) Electromagnetic waves are produced by
 (a) an accelerating charge (b) a stationary charge (c) chargeless particles
 (d) a moving charge

(ix) \(\int \vec{J} \cdot d\vec{A} \) is equal to
 (a) \(i \) (b) \(q \) (c) \(v \) (d) \(\vec{E} \)

(x) The magnitude of the Poynting vector is
 (a) \(\frac{P}{A} \) (b) \(\frac{\mu_0}{c} B^2 \)
 (c) \(\frac{S\vec{A}}{c} \) (d) \(\frac{1}{\mu_0} \frac{dU}{dt} \)
Q.2. Write short answers of the following questions: (2×10 = 20)

i. What is meant by an electric field of continuous charge distribution?

ii. Why can an isolated atom not have a permanent electric dipole moment?

iii. What is Gauss law for magnetism?

iv. State Faraday’s law & give reason for its negative sign.

v. Define current density and microscopic form of Ohm’s law.

vi. What do you mean by motional EMF?

vii. If an electron is not deflected in passing through a certain region of space, can we be sure that there is no magnetic field in the region?

viii. Is there any way to set up a magnetic field other than by causing charge to move?

ix. How do you distinguish between ε_0 and μ_0? How are they related with velocity of electromagnetic waves in the space?

x. What are superconductors?

Q.3: (a) Apply Gauss’ law to a parallel plate capacitor filled with a material of dielectric constant k_e and derive the relation: $\varepsilon_0 k_e \int \vec{E} \cdot d\vec{A} = q$

(b) A plastic rod, whose length L is 220 cm and whose radius r is 3.6 mm, carries a negative charge q of magnitude $3.8 \times 10^{-7} C$, spread uniformly over its surface. What is the electric field near the midpoint of the rod, at a point on its surface?

Q.4: (a) By using Biot-Savart’s law, derive an expression for magnetic field due to a current i in a straight wire segment of length L.

(b) A rectangular coil of length 2.10 cm and width 1.25 cm having 250 turns carries a current of 85 μA.

(i) What is the magnetic dipole moment of this coil?

(ii) The magnetic dipole moment of the coil is lined up with an external magnetic field whose strength is 0.85 T. How much work would be done by an external agent to rotate the coil through 180°?

Q.5: (a) Describe the energy transport of electromagnetic waves in terms of pointing vector?

(b) Show that the expression for the electric field of a circular disk of radius R, carrying a uniform surface charge density, is given by

$$E_z = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$$
Section – I (Objective Type)

Q.1. Select the correct answer and encircle it. Over writing, Cutting, Erasing or use of lead pencil is not allowed and will carry zero credit. (1×10 = 10)

(i) Recombination occurs when
 (a) an electron falls into a hole
 (c) a crystal is formed
 (b) a valence electron becomes a conduction electron
 (d) a positive and a negative ion bond together

(ii) The main function of clumper circuit is to
 (a) suppress variations in signal voltage
 (c) lower negative half cycle of signal
 (b) raise positive half cycle of signal
 (d) introduce a dc level into ac signal

(iii) The diffusion of free electrons across the junction of an unbiased diode produces
 (a) forward bias
 (c) depletion layer
 (b) reverse bias
 (d) break down

(iv) When a diode is forward biased, the recombination of electrons and holes may produce
 (a) light
 (c) radiation
 (b) heat
 (d) all of above

(v) Without a dc source, a clipper circuit resembles to a
 (a) clamper
 (c) voltage doubler
 (b) rectifier
 (d) none as above

(vi) If current through the resistor is halved, wattage developed by it would be
 (a) halved
 (c) cut to one fourth
 (b) quadrupled
 (d) doubled

(vii) If both the emitter-base and the collector-base junctions of a bipolar transistor are forward biased, the transistor is in the
 (a) active region
 (c) cut-off region
 (b) saturated region
 (d) inverse mode

(viii) The biasing technique that produces the most unstable Q-point is
 (a) collector bias
 (c) base bias
 (b) emitter bias
 (d) voltage-divider bias

(ix) The JFET is
 (a) a two terminal device
 (c) a current controlled device
 (b) a voltage-controlled device
 (d) none as above

(x) Compared to BJT, the JFET has much high
 (a) input resistance
 (c) current gain
 (b) voltage gain
 (d) supply voltage
Section – II (Subjective Type)

Q.2. Write short answers of the following questions: \(2 \times 10 = 20\)

i. Why diode is a non linear device?
ii. What is peak reverse voltage (PRV)?
iii. Draw the circuit diagram of common emitter (CE) self biased circuit.
iv. What are the major advantages of CE configuration of transistor over the others?
v. Why Silicon is preferred over Germanium for fabrication of semiconductor devices?
vi. Draw the circuit diagram of a voltage doubler circuit.
vii. What are the end points or the intercepts of the dc load line?
viii. Why a BJT is called current controlled device?
ix. What is the construction difference between a JFET and MOSFET?
x. Why do we limit FET operation to small signals?

Q.3: (a) Explain the formation of depletion region in a \(pn\) junction. Define barrier potential and discuss its significance.
(b) Discuss the circuit operation of a negative diode clipper and draw its output voltage waveform.

Q.4: (a) For the common-emitter (CE) transistor amplifier draw the \(h\) parameter equivalent circuit, and derive an expression for voltage gain \(A_v\).
(b) Briefly explain the working of voltage-divider common-emitter (CE) amplifier.

Q.5: (a) Discuss the operation of an \(n\)-channel MOSFET in enhancement mode.
(b) Briefly explain the term transconductance.
Q. 1. Choose the correct answer. (1x10)

1. Which are the basic postulates of Bohr’s model for the hydrogen atom?
 (a) The electron moves in a circular orbit around the proton
 (b) The electrons in stationary (stable) orbits do not emit energy as radiation.
 (c) When an electron moves from a higher energy orbit to a lower energy orbit, photons are emitted.
 (d) All of the above.

2. A body moves with velocity of 3×10^8 m/s, its relativistic mass becomes
 (a) Zero
 (b) Infinity
 (c) Double of its rest mass
 (d) Unity

3. The wavelength of the wave associated with a moving object is given by
 (a) $\lambda = \frac{mv}{h}$
 (b) λ
 (c) $\lambda = \frac{h}{mv^2}$
 (d) $\lambda = \frac{h}{mv}$

4. A scientist is trying to eject electrons from a metal by shining a light on it, but none are coming out. To eject electrons, she should change the light by
 (a) Decreasing the frequency
 (b) Increasing the frequency
 (c) Increasing the intensity
 (d) Increasing the wavelength

5. A neutron has almost 2000 times the rest mass of an electron. Suppose they both have 1 eV of energy. How do their wavelengths compare?
 (a) Both same
 (b) Zero
 (c) Neutron wavelength < electron wavelength
 (d) Neutron wavelength > electron wavelength

P.T.O.
6. Compton length is given by
 (a) $\frac{h}{m_0c^2}$
 (b) $\frac{h}{m_0c}$
 (c) hc/m_0
 (d) m_0h/c

7. Which is the most convenient unit for energy at the atomic level?
 (a) Joule (b)
 (b) Watt-second
 (c) Newton-meter
 (d) Electron volt

8. What happens during the alpha decay?
 (a) A neutron is emitted
 (b) An electron is emitted
 (c) A helium core is emitted
 (d) A photon core is emitted

9. Which of the following are electromagnetic waves?
 (a) α-rays
 (b) β^--rays
 (c) β^+-rays
 (d) γ-rays

10. The two elements with same number of electrons but different mass number are called
 (a) isotones
 (b) isobars
 (c) isomers
 (d) isotopes
SECTION-I

Q.2. Give answers of the following short questions. (2x10 = 20)

1. State the Heisenberg Uncertainty principle.
2. Which are the experiments that support the wave theory of light and the particle theory of light?
3. What are the postulates of special theory of relativity?
4. Define half-life of radioactive element.
5. If the de Broglie wavelength of electron is 0.113 pm. What is the speed of the electron?
6. What are the momentum and energy operators?
7. Define characteristic x-ray spectrum?
8. Define probability density?
9. What is time dependent Schrödinger wave equation?
10. Define spontaneous emission?

SECTION-II

Q.3: (a) Derive radioactive decay law. Hence obtain an expression for the half-life in terms of decay constant.
(b) X-rays of wavelength 100 pm are scattered from a carbon target. The scattered radiation is viewed at 90° to the incident beam. What is the Compton shift Δλ? (5x5)

Q.4: (a) Describe Lorentz transformation, hence find inverse Lorentz transformation?
(b) Calculate the wavelength λ_{min} for the continuous spectrum of x-rays emitted when 35 keV electrons fall on a molybdenum target? (5x5)

Q.5: (a) Describe the behavior of a particle trapped in an infinitely deep well using Schrödinger wave equation and show that the energy of the particle inside the well is quantized?
(b) If the wave function \(\psi = A \sin(\frac{\pi x}{L}) \) is normalized in \(0 \leq x \leq L \), calculate the value of A? (5x5)