Fic. No.
Fic. No. \qquad

Statistics Part-II Paper-I

SECTION "A"

Time: 20 Min
Marks: 15
NOTE:Use this sheet for this section. No marks will be awarded for cutting, erasing or overwriting.
Q1.Choose the correct answer from the given choices i.e. (a, b, c, d) and insert into the relevant box.
(i). If regression co-efficients are positive, then correlation co-efficient must be \qquad
\square
(A) Positive
(B).Negative
(C). Zero
(D) +1

(ii) Area to the right of $\mathrm{z}=0$ is \qquad
(a) +1
(b) 0.5 (c) -1
(d) -0.5
(iii). Possible samples of size 2 with replacement form a population of size 5 are \qquad

(a) 2
(b) 5
(c) 25
(d) 10
(iv). Critical region will be taken in the right tail if \qquad

(a). $\mathrm{H}_{1} \quad \theta \neq \theta_{0}$
(b) $\mathrm{H}_{0}: \theta=\theta_{0}$
(c) $\mathrm{H}_{0} \quad \theta \geq \theta_{0}$
(d). $\mathrm{H}_{1}: \theta>\theta_{0}$
(v). Mean of a normal distribution is 16 , then median will be \qquad
\square
(a) 2
(b) 4
(c) 8
(d) 16
(vi). Formula used to find unknown population Parameter is called \qquad
(a) Estimation
(b) Estimate
(c) Estimator
(d) None of these
(vii). Statistical inference has \qquad branches. \square
(a) 4
(b) 2
(c) 3
(d) None of these
(viii). In contingency table if observed and expected frequencies are equal, then chi-square will be \qquad
(a) Zero
(b) Negative
(c) +1
(d) -1

(ix). The rank correlation co-efficient is used to measure the relation ship between two \qquad variables.
(a) Qualitative
(b) Quantitative
(c) Discrete
(d) None of these
(x). The odd order moments about mean of a normal distribution will always be \qquad

(a) Positive
(b) Zero
(c) Negative
(d) None of thes
(xi). In regression analysis, the variable which is being predicted is called \qquad variable.
(a) Continuous
(b) Independent
(c) Dependent
(d) None of these
(xii). Rejecting a true null hypothesis is called \qquad error.

(a) Standard
(b) Sampling
(c) Type-II
(d) Type-I
(xiii). As the sample size increases, the standard error of the mean \qquad .
(a)Increases
(b) Decreases
(c) Unchanged
(d) None of these
(xiv). Seasonal variations are \qquad changes.
(a) Long term
(b)Short term
(c) Unsystematic
(d) None of these
(xv). methods are available for computing secular trend.

\qquad
(b) Three
(c) Four
(d) Five
(a) Two

Statistics Part-II
 Paper-I

SECTION "B"

Marks: 36

Q2. Attempt any NINE questions. Each question carries 4 marks.

(i) Distinguish between regression and correlation .
(ii) Using property $r=\sqrt{b x y \times b y x}$. If $\mathrm{r}=0.56$ and $\mathrm{bxy}=0.65$ find byx.
(iii) Differentiate between probability and non-probability sampling.
(iv) Explain what is unbiased estimator?
(v) In sampling with replacement, if $\mathrm{P}=0.45, \mathrm{n}=36$. Find $\mu \hat{p}$ and $\delta^{2} \hat{p}$.
(vi) What are acceptance and rejection regions?
(vii) Write down the properties of sampling distribution of $\left(\bar{x}-\overline{x_{2}}\right)$
(viii) Explain what is statistical inference?
(ix) Calculate chi-square from the following 2×2 contingency table.

	A_{1}	$\mathrm{~A}_{2}$
$\mathrm{~B}_{1}$	$\underline{70}$	$\underline{30}$
$\mathrm{~B}_{2}$	$\underline{25}$	$\underline{105}$

(x) Explain the terms test statistic, simple hypothesis and type-I error.
(xi) In normal distribution if $\delta=25$. Find mean deviation.
(xii) If $\mathrm{n}_{1}=\mathrm{n}_{2}=64, \overline{\mathrm{x}}=2.9, \overline{\mathrm{x}}_{2}=5.1, \stackrel{2}{\mathrm{~s}_{1}}=0.83 \stackrel{\mathrm{~s}}{2}_{2}^{2}=0.83$. Construct 95% confidence interval for $\mu_{1}-\mu_{2}$.
(xiii) Explain what is simple Random sampling?

SECTION "C"

Marks: 24
Note: Attempt any THREE questions. Each question carries 10 marks.
Q3. (a)Fit regression line of yon x from the following.

\mathbf{X}	30	25	65	50
\mathbf{Y}	15	28	30	22

(b) If X is normal random variable with mean 50 and S.D 11. Find $\mathrm{P}(\mathrm{x} \geq 50), \mathrm{P}(45 \leq \mathrm{x} \leq 45)$

Q4. (a) Given $\mathrm{n}_{1}=144$
$\overline{\mathrm{x}}_{1}=6.5$
$\mathrm{s}_{1}=4$
$\mathrm{n}_{2}=100 \quad \overline{\mathrm{x}}_{2}=6 \quad \mathrm{~s}_{2}^{2}=2$
Test $\quad \mathrm{H}_{0}: \quad \mu_{1}-\mu_{2}$. at $\quad \alpha=0.05$
(b) Complete trend valves by semi-Average method.

Year	2001	2002	2003	2004	2005	2006
Sale	120	124	122	130	128	132

Q5. Find spearmen's Rank correlation co-efficient from the following.

\mathbf{Y}	23	36	24	25	33	36	40	25	27
\mathbf{X}	48	52	35	30	48	51	42	30	48

Q6. Let Z be a standard Normal random variable. Find the following.
i. Area to the right of 2.63
iii. Area between 2.27 and 3.02
ii. Area to the lift of -1.45
iv. Area between -2.65 and 2.09

