Serial No.	of Answer	Book

MRD-E/XI (A) Mathematics Part-I

Roll Number	

Fic. No	
---------	--

			_ Fic. No.	
	Mathe	ematics Par	rt-I	
	SI	ECTION "A"		
NOTE II	Time: 20 Min		Marks: 2	
	his sheet for this section. No m		O.	
(i).	the correct answer from the give $(-i)^{-19} = $	en choices i.e. (a, b,	c, a) and insert into th	le relevant box.
(1).	(A) í (B) - í	(C)1 (D))-1	
(ii).	A group G is called abelian group if it	has	, .	
	A group G is called abelian group if it (A)Distributive prop (B)Associative	e prop (C)Commutati	ve prop (D) Identity	
(iii).	If $z = a + ib$ then $ -z' = \underline{\hspace{1cm}}$		<i>t</i> = <i>x</i>	
	If $z = a + ib$ then $ -z = $ (A) $a^2 - b^2$ (B) $a^2 + b^2$	(C) $\sqrt{a^2+b^2}$	(D) $\sqrt{a^2-b^2}$	
(iv).	If A is a square Matrix and $ A = 0$ the a	a ⁻¹ =		
	If A is a square Matrix and $ A = 0$ the a (A) = A (B) $\frac{1}{ A } adjA$	(C) Not exist	(D) = -A	
(v).	If A is a square Matrix of order n the c			
.,	(A) $(-1)^{i+j} \dot{M}_{ij}$ (B) M_{ij} (C) -	M_{ij} (D) (-1) ⁱ⁺ⁱ M		
(vi).	The equation $4x^2 + x + 1 = 0$ has	roots.	(5)	
()	(A) Real (B) Imaginary	· ·	(D) None	
(vii).	$\omega^{-5} =$ Where w is a (A) 1 (B) 0	Cube root of unity. (C) ω	(D) ω ²	
(viii).	If the roots of the quadratic equation a	· •		
()	(A) $b^2 - 4ac = 0$ (B) $b^2 - 4ac > 0$	(C) $b^2 - 4ac \ge 0$	(D) $b^2 - 4ac < 0$	
(ix).	If $a_n = (-1)^n(n+1)$ then $a3 = $ (A) 3 (B) -4			
(v)				
(x).	True relation between Arithmetic Geo (A) A>H>G (B) G>H>A			
(xi).	$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is the series	of		
()				
, m	n	(C) Harmonic (I) Neither of them	
(xii).	<i>C</i> =			
	(A) $\frac{1}{r!} p$ (B) $\frac{n}{p}$	C C (D)	$\overset{c}{C}_{\cdot}$	
(xiii).	In the binomial expansion of $(a+b)^n$ the			
(//////	(A) n+2 (B) n+1 (C	b) n (D)	n-1	
(xiv).	$\frac{-3\pi}{4}$ radians =	,		
, ,	(a) 130 ⁰ (b) -135 ⁰	(c) 135 ⁰ (d)	180	
()		(c) 135° (u)	$\overline{\pi}$	
(xv).	$\cos (\alpha + (\frac{\pi}{2})) = \underline{\hspace{1cm}}$			
	(A) $\cos \alpha$ (B) $\cos \alpha$	(C) $\sin \alpha$ (D)	-sin $lpha$	
(xvi).	Period of 5 Sin 3x is		2	
	(A) $\cos \alpha$ (B) $-\cos \alpha$ Period of 5 Sin 3x is (B) $\frac{3\pi}{2}$	(C) - π	(D) $\frac{2\pi}{3}$	
(xvii).	(A) 2π (B) $\frac{3\pi}{2}$ In law of tangents $\frac{a+c}{a-c} = \frac{1}{\tan(\frac{\alpha+y}{2})}$ (A) $\tan(\frac{\alpha+\beta}{2})$ (B) $\frac{\tan(\frac{\alpha+y}{2})}{\tan(\frac{\alpha-y}{2})}$	·	5	
	$(A) \tan (\alpha + \beta) \qquad (B) \tan(\frac{\alpha + y}{\alpha})$	(C) top $(\beta - y)$	(D) $\tan(\alpha - y)$	
	(A) $tall \left(\frac{2}{2} \right)$ (B) $\frac{2}{\alpha - y}$	(C) $\frac{1}{2}$	(D) $\frac{\tan(\frac{\pi}{2})}{\alpha + \nu}$	
(xviii).	3			
(xix).	(A) In Circle (B) Circum Circle (Domain of y = see x is	C) Escribe Circle (D)	NOUE OF HESE	
(····)·	(a). $[0, \pi]$ (b). $[-\pi, \pi]$	— (c). (-2 π .2 π)	(d). $[0. \pi] - \frac{\pi}{}$	
(xx).	Cos-1(-x) =	(-, (,	2	
V	$^{\text{Cos-1}}(-x) = \underline{\hspace{1cm}}$. (a). π - $^{\text{Cos-1}}x$ (b). π + $^{\text{Cos-1}}$	⁻¹ x (c).Cos ⁻¹ x	(d)Cos ⁻¹ x	

MRD-E/XI (A)

Mathematics Part-I

Time: Allowed: 2.40h Marks: 80

SECTION "B"

Marks: 50

Q2. Answer any Ten (10) of the following Parts.

- (i) if Z1 = a + ib, Z2 = c + id then prove that $\left[\frac{\overline{Z1}}{Z2}\right] = \frac{\overline{Z1}}{\overline{Z2}}$
- (ii) $S=\{0,1,2,3\}$ show that (S,+) is a Semi group. Where + defines addition Modulo 4.
- (iii) Find the inverse of the Matrix $\begin{bmatrix} 4 & -2 & 5 \\ 2 & 1 & 0 \\ -2 & 2 & 3 \end{bmatrix}$ by using elementary row operation.
- (iv) Solve the equation (x-3)(x+9)(x+5)(x-7) = 385
- (v) If α, β are the roots of $x^2-4x+2=0$ then find the equation whose roots are $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$
- (vi) Decompose $\frac{x^2+3}{(x-1)(x^2+1)^2}$ into Partial fraction.
- (vii) Find four numbers in A.P such that their sum is 66 and the sum of their squares is 1214.
- (viii) Find the Sum to n terms of the series $2.3.1 + 3.4.4 + 4.5.7 + \cdots$
- (ix) Find the value of n when p : p = 0.1
- (x) Prove by Mathematical Indus that $2^2+4^2+6^2+\cdots+(2n)^2=\frac{2}{3}n(n+1)(2n+1)$
- (xi) Prove that $\frac{\sin x \cos x}{\tan^2 x 1} = \frac{\cos^2 x}{\sin x \cos x}$
- (xii) Show that $\sin 5\theta + 2 \sin 3\theta + \sin \theta = 4 \sin 3\theta \cos^2 \theta$
- (xiii) Use the law of cosines to prove that $1 + \cos \alpha = \frac{(b+c+a)(b+c-a)}{2bc}$

SECTION "C"

Marks: 30

Note: Attempt any THREE questions. All questions carry equal marks.

- Q3. (A) Find real and imaginary Parts of $\left(\frac{1-i\sqrt{3}}{1+i\sqrt{3}}\right)^4$ (B) Solve the Matrix equation for x $x\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 4 & 5 \end{bmatrix}$
- Q4. (A) if n+1, and x-2 are the factors of the polynomial x³-mx²+nx+2 then using synthetic division to find the values of m & n.
 - (B) If $\frac{1}{y-x}$, $\frac{1}{2y}$ and $\frac{1}{y-z}$ from an A.P. prove that x, y and z form a G.P.
- Q.5 (A) Find the term independent of x in the expansion of $\left(\sqrt{x} + \frac{1}{3x}\right)^{11}$
 - (B) If $y = \frac{1}{2^2} + \frac{1.3}{2!} \cdot \frac{1}{2^4} + \frac{1.3.5}{3!} \cdot \frac{1}{2^6} + \dots$ then $y^2 + 2y 1 = 0$
- Q.6 (A) Prove $\sin^2 \frac{\theta}{2} = \frac{\sin \theta \cdot \tan \frac{\theta}{2}}{2}$
 - (B) The angle of elevation of a building is 48⁰ from A and 61⁰ from B. if AB is 20 m. Find the height of the building.