A-PDF Watermark DEMO: Purchase from www A-PDF com to remove the watermark FEDERAL PUBLIC SERVICE COMMISSION

TIME ALLOWED: THREE HOURS

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

MAXIMUM MARKS: 100

PURE MATHEMATICS, PAPER-I

questions from SECTION – B. All questions carry equal marks. (ii) Use of Scientific Calculator is allowed.		questions from SECTION – B. All questions carry equal marks. Use of Scientific Calculator is allowed.	VO	
	SECTION - A			
Q.1.	(a)	Prove that both the order and index of a subgroup of a finite group divide the order of the group.	(10)	
	(b)	Define cyclic group. Also prove that every cyclic group is abelian.	(05)	
	(c)	Define order of a permutation in S_n . Find the order of $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	(05)	
Q.2.	(a)	Let ϕ be a homomorphism of a group G onto another group H with Kernel K. Prove that G/K is isomorphic to H.	(10)	
	(b)	Show that the vectors $(3, 0, -3)$, $(-1, 1, 2)$, $(4, 2, -2)$ and $(2, 1, 1)$ are linearly dependent over R.	(10)	
Q.3.	(a)	Define the dimension of a vector space V over a field F. Also prove that all basis of a finite dimensional vector space contain the same number of elements.	(10)	
	(b)	A linear transformation $T: U \to V$ is one –to-one iff $N(T) = \{0\}$.	(10)	
Q.4.	(a)	Examine the following system for a non-trivial solution:	(10)	
	(b)	$x_1 - x_2 + 2x_3 + x_4 = 0$ $3x_1 + 2x_2 + x_4 = 0$ $4x_1 + x_2 + 2x_3 + 2x_4 = 0$ Show that $\overline{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}$ form finite field with addition and multiplication of residue classes modulo P.	(10)	
Q.5.	(a)	Let V be a vector space of n – square matrices over a field R. Let U and W be the subspaces of symmetric and anti symmetric matrices respectively. Then show that $V = U O W$.	(10)	
	(b)	Let A and B be matrices of order 6 such that det $(AB^2) = 72$ and det $(A^2B^2) = 144$. Find	(10)	
		det (A) and det (AB ⁶)		
		SECTION – B		
Q.6.	(a)	Sketch the curve $r^2 = a^2 \cos 2\theta$, $a > 0$.	(10)	
	(b)	Find the tangent and the normal to the circle $x = a \cos \theta$, $y = a \sin \theta$ at the point P (a cos α , a sin α).	(10)	
Q.7.	(a)	Find the Pedal equation of the parabola $y^2 = 4a(x+a)$	(10)	
	(b)	Find the equations for a straight line passing through the points $P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2)$. Find the co-ordinates of the point where this line cuts the yz-plane.	(10)	
Q.8.	(a)	Determine the curvature of the cycloid $x = a$ ($t - \sin t$), $y = a(1 - \cos t)$ at the point (x,y).	(10)	
	(b)	Find the equation of the plane which passes through the point (3, 4, 5) has an	(10)	

x – intercept equal to -5 and is perpendicular to the plane 2x + 3y - z = 8.