A-PDF Watermediately, PAPER se from www.A-PDF.com to remove the watermark FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

25		<u>CH</u>	EMIST	<u>FRY, PAP</u>	ER-I							
TIME ALLOWED:		(PART-I) 30 MINUTES (PART-II) 2 HOURS & 30 MINUTES			<u> </u>	MAXIMUM MARKS:20 MAXIMUM MARKS:80						
NOTI	after (ii) Over	attempt PAR' 30 minutes. writing/cuttingtific calculate	ng of th	e options/						taken ba	ack	
			(PART – COMPU	JLSO	RY)	_					
Q.1.		est option/ans				-					(20)	
(i)	When an electron is brought from infinite distance close to the nucleus of the atom, the energy of											
	Electron-nucleus system? (a) increases to a smaller negative value (b) decreases to a greater negative value											
		ses to a smalle			(b)			a greater			;	
(ii)		ity of finding					cases to t	i greater	розит	varue		
(11)		due to forces of			(b)		e for all	orbitals				
	(c) Zero for all orbitals (d) Zero for some orbitals and finite for or								others			
(iii)		etal is kept in (ipitated a	and ZnSC	O ₄ is for	med be	cause:	
		number of Z				r						
		number of Z				1 41						
		rd reduction p										
(iv)		(d) Standard reduction potential of Zinc is less than that of copper										
(1V)	Electrolytes when dissolved in water, dissociate into their constituent ions, the degree o dissociation of an electrolyte increases with the:											
		ce of a substar										
		sing temperat										
		sing concentra										
		ing concentra										
(v)		irge positive of	entropy	change fo	or an ex	xothe	rmic read	ction. It	means	that the	e reaction	
	will be:	a at high tange	4	1	(1-)	:	:1.1.	11 4		_		
		e at high tempe e at low tempe			(b) (d)			t all temp I tempera		S		
(vi)		e following sta			(u)	poss	sivic at ai	i temper	atures			
(11)					fall if	an e	exotherm	ic reacti	on is i	isolated	from its	
		(a) the temperature of the system will fall if an exothermic reaction is isolated from it surroundings										
	(b) Energy is absorbed when one compound is converted into another with higher heat content											
		nperature of t	he syst	em is like	ly to f	all if	heat is	absorbed	during	the co	ourse of a	
	reaction											
(-:ii)	(d) None o		and in.									
(vii)	(a) S—H	bond is strong	O-H .	S	(c)	F-H	O		(d)	F-H	S	
(viii)	Heavy water		O 11 .		(0)				(u)	1 11		
	•	amount of salt	s (b)	Deuteriu	m	(c)	O^{18}		(d)	O^{16}		
(ix)		f a solution is:				` /			()			
	(a) 7		(b)	Zero		(c)	14		(d)	-14		
(x)		nd that is not										
()	(a) BF ₃	11	(b)	$BaCl_2$		(c)	SnCl ₄		(d)	AlCl ₃		
(xi)	· ·	id having K _a :	(b)	10 ⁻⁴		(a)	1		(4)	10 ⁻²		
(xii)	(a) 10 ⁴ Ore of Alum	inium:	(b)	10		(c)	1		(d)	10		

(b) Dolomite

(a) Calamine

(c) Bauxite

(d) Limestone

		SIRY, PAPER-I								
(X11	_	Oxidation number of S in sulphuric acid:		_						
		(a) Four (b) Six	(c)	Two	(d)	Eight				
(xiv	V)	d-block elements form coordination compounds because of: (a) Small Cationic size (b) Large ionic Charge								
		(a) Small Cationic size	Large ionic Cha							
,		(c) Unfilled d-orbitals	(d)	Filled d-orbitals						
(xv		Brass is an alloy of:		G 137	<i>(</i> 1)	G 11 7				
		(a) Cu and Zn (b) Cu, Ni, Zn	(c)	Cu and Ni	(d)	Cu, Al, Zn				
(xv		Urea is a high quality nitrogenous fertilizer with:				• • • •				
		(a) 76% nitrogen (b) 46% nitrogen	(c)	66% nitrogen	(d)	26% nitrogen				
(xv	11)	Diamond is:								
	(a) Good conductor of electricity	(b) Bad conductor of electricity								
		(c) Bad conductor on heating	(d) Good conductor on heating							
(xv		Carbon monoxide is poisonous gas because it:								
		(a) replaces oxygen from lungs	(b) forms carboxy haemoglobin							
		(c) Forms carbon dioxide with oxygen (d) has a sweet smell								
(xiz	/	Rust is:	() 1	F 0	(1) T	- 0 · F (OH)				
,		(a) $FeO + Fe(OH)_2$ (b) $Fe_2O_3 + Fe(OH)_2$	(c) I	Fe_2O_3	(d) F	$Fe_2O_3 + Fe(OH)_3$				
		Calcium Carbide reacts with water to give:			(D =	3.1				
		(a) Methane (b) Ethylene	(c) A	Acetylene	(d) E	Ethane				
		D + D/F	**							
		PART –	<u>11</u>							
		(i) PART-II is to be attempted on the separate	Ansv	ver Book.						
NOT	T.	(ii) Attempt ONLY FOUR questions from PAI	RT-II	 All questions ca 	rry EQ	UAL marks.				
NUI	L:	(iii) Extra attempt of any question or any pa	rt of	the attempted q	uestion	will not be				
		considered.								
Q.2.	(2)	Derive the Principal Quantum number from sch	rodin	ger wave equation	n and i	inetify that if the				
Q.2.	(a)	orbit of hydrogen atom is spherically symmetric								
		same as deduced by Bohr.	ai tiic	ii expression for t	chergy	(12)				
	(b)	An atom of Helium is moving in one Dimensio	nal h	ov of width 10^{-2}	m Cal					
	(0)	difference between second and third energy level.		ox of width fo	III. Cai	(8)				
										
Q.3.	(a)	How do you measure the pH of a solution by pote			ng:	(15)				
				lass Electrode						
	(b)	Calculate the pH of a buffer solution containing	0.2N	1 acetic acid and	$0.02~\mathrm{M}$	I so <mark>dium</mark> acetate				
		pK _a of acetic acid is 4.73.				(5)				
Q.4.	(a)	Define following types of processes:				(8)				
ζ	(u)		iii) Is	ochoric (iv) Isob					
	(b)	How the pressure, temperature and volume of	· /	,	_					
	(0)	process:	u gu	is the related to	cacii	(8)				
	(c)	1 mole of an ideal gas at 25°c is allowed to ex	knand	reversibly at con	nstant t					
	(•)	15dm ³ to 30dm ³ calculate the work done by gas:	-punu	i io, orbioly we co.		(4)				
~ -		, 0								
Q.5.		What is acid rain? How is it produced? Give in a		•	.1	(8)				
	(b)	Discuss the harmful effects of acid rain on enviro	nmen	it and human heal	th.	(8)				
	(c)	Enlist major sources for air pollution.				(4)				
Q.6.	(a)	Describe the composition of Portland cement.				(6)				
•	(b)	Which raw materials are used to manufacture glas	ss on	industrial scale?		(6)				
	(c)	What is fibre glass? Describe its uses.				(4)				
	(d)	Which compounds are added to impart different of	colour	s to glass?		(4)				
o =	` ′				,					
Q.7.		How is urea manufactured in Pakistan, explain w	ith fic	ow sheet diagram's		(10)				
	(b)	Name at least four nigtrogenous fertilizers.		to a to at the second	C	(4)				
	(c)	5.35 gm NH ₄ Cl is heated with excess of quick lin								
		If this ammonia is dissolved in 1 litre of water, Ca	aicula	ite the normality of	or this s	olution. (6)				
Q.8.	(a)	What are transition metals? Discuss their character	eristic	features.		(12)				
-	(b)	Why AgCl is soluble in NH ₃ ?				(4)				
	(c)	What are alloy steels, give some examples?				(4)				
	(-,					(• /				
