Г		MO: Purchase from www.A-PDF.com to remove the wa FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010 <u>APPLIED MATH, PAPER-I</u>	<u>Roll Number</u>
	TIME AI	LLOWED: 3 HOURS MAXIMU	UM MARKS:100
	NOTE:	 (i) Attempt FIVE question in all by selecting at least TWO questions fro and THREE question from SECTION – B. All questions carry EQUA (ii) Use of Scientific Calculator is allowed. 	
_	<u>SECTION – A</u>		
	Q.1.	 Explain the following giving examples and supported by figures: (a) Gradient (b) Divergence (c) Curl (d) Curvilinear Coordinates 	(5+5+5+5)
	Q.2.	Given that A,B,C are vectors having components along axis. Prove that: (a) $B x C = \begin{vmatrix} i & j & k \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$ (b) A x B x C = A _x B _x C _x (i x k) + A _y B _x C _y (j x k)	(10+10)
	Q.3. (a) (b)	State and prove Stokes Theorem Given that V=4y i+x j + 2z k, find $\int (0 \times V)$. nd σ over the hemi sphere $x^2+y^2+z^2=a^2$, $z>=0$.	(10) (10)
		SECTION – B	
	Q.4.	Discuss the following systems supported by figures/diagrams: (a)	
	7	 Equilibrium of a System coplanar forces Centre of mass of right circular solid cone of height h. (b) Centre of gravity of a rigid body of any shape. 	(5) (5) (10)
	Q.5. (a)	What is Simple Harmonic Motion? Discuss it in detail using Derivatives w	vith respe <mark>ct t</mark> ime. (10)
	(b)	Describe the Simple Harmonic Motion of a pendulum and Calculate the motion.	he time period of the (10)
	Q.6. (a) (b)	 Derive expression for the following: Moment of inertia Product of inertia Calculate the moment of inertia of solid sphere of mass m=37 and radius a 	(5) (5)
		Derive the general expression.	(10)
	Q.7. (a) (b)	Explain Kepler's Laws. What is Impulsive Motion? Derive its equation.	(10) (10)
	Q.8. (a) (b)	 Define Work, Torque, Power and energy. A cricket ball is thrown vertically upwards, it attained the maximum heigh Seconds. Calculate its. Velocity of projection in direction vertically upward Acceleration when it returns to the point of projection 	(10) I.